Constraints
Time Limit: 1 secs, Memory Limit: 32 MB
Description
小W发明了一个游戏,他在黑板上写出了一行数字a1,a2,….an,然后给你m个回合的机会,每回合你可以从中选择一个数擦去它,接着剩下来的每个数字ai都要递减一个值bi。如此重复m个回合,所有你擦去的数字之和就是你所得到的分数。
小W和他的好朋友小Y玩了这个游戏,可是他发现,对于每个给出的an和bn序列,小Y的得分总是比他高,所以他就很不服气。于是他想让你帮他算算,对于每个an和bn序列,可以得到的最大得分是多少。这样他就知道有没有可能超过小Y的得分。
Input
第一行,一个整数n(1<=n<=200),表示数字的个数。
第二行,一个整数m(1<=m<=n),表示回合数。
接下来一行有n个不超过10000的正整数,a1,a2…an,表示原始数字
最后一行有n个不超过500的正整数,b1,b2….bn,表示每回合每个数字递减的值
Output
一个整数,表示最大可能的得分
Sample Input
3 3 10 20 30 4 5 6
Sample Output
47
Problem Source
ZSUACM Team Member
Solution
一开始想用贪心,但是考虑到了时间的限制,贪心是有漏洞的,可能小数的递减很小,大数的递减很大,导致在某一时候还不如选择小数。
然后问题的求解是和时间有关的,试着用dp。
问题看作是容量为m的背包,数字的权重是数值,和时间有关,为a[i]-(j-1)*b[i],j可以看作是时间,也可以看做是容量,因为一回合一秒。
把j看作是容量的话就很容易写出状态转移方程了:f[j]=max(f[j], f[j-1]+a[i]-(j-1)*b[j]),注意要先排序。
状态转移方程的意思就是当取第i件物品第j回合的时候取好还是不取好。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int a[205], b[205], r[205], f[205];
bool cmp(const int x, const int y) {return b[x] > b[y];}
int main()
{
int i, j, n, m;
scanf("%d%d", &n, &m);
for (i = 0; i < n; ++i) r[i] = i, scanf("%d", &a[i]);
for (i = 0; i < n; ++i) scanf("%d", &b[i]);
sort(r, r+n, cmp);
for (i = 0; i < n; ++i)
{
int t = r[i];
for (j = m; j > 0; --j) f[j] = max(f[j], f[j-1] + a[t] - (j-1) * b[t]);
}
printf("%d\n", f[m]);
return 0;
}