盒子里的气球问题与最短加链法问题求解

盒子里的气球问题

这个问题可以看作是一个优化问题,我们需要找到一种放置气球的顺序,使得所有气球占据的总体积最大。这可以通过模拟气球膨胀的过程,并在每一步选择最优的放置点来实现。

解题思路:

  1. 定义盒子和点

    • 假设盒子是一个长方体,其尺寸为 l×w×hl×w×h。
    • 盒子内有 NN 个点,每个点的坐标为 (xi,yi,zi)(xi​,yi​,zi​)。
  2. 模拟气球膨胀

    • 每个气球从一个小点开始膨胀,直到它接触到其他气球或盒子的边界。
    • 气球膨胀时,它会在所有方向上均匀膨胀。
  3. 计算气球体积

    • 气球的体积 VV 可以通过计算它占据的立方体空间来确定。
  4. 选择最优放置点

    • 在每一步中,我们需要选择一个点来放置气球,使得剩余空间被最大化利用。
    • 这可以通过计算每个点放置气球后剩余空间的体积,并选择体积最大的点来实现。
  5. 迭代过程

  6. 重复上述过程,直到所有点都被放置了气球。
    import numpy as np
    
    # 盒子的尺寸
    l, w, h = 1, 1, 1
    
    # 点的坐标
    points = np.array([
        [0.1, 0.1, 0.1],
        [0.5, 0.5, 0.5],
        [0.9, 0.9, 0.9],
        # 添加更多点...
    ])
    
    # 计算气球体积的函数
    def calculate_volume(point, radius):
        return (4/3) * np.pi * radius**3
    
    # 模拟气球膨胀的过程
    def expand_balloons(points):
        total_volume = 0
        for point in points:
            # 假设气球从一个小点开始膨胀
            radius = 0.1
            while True:
                # 检查气球是否接触到边界或其他气球
                if (point[0] - radius < 0 or point[0] + radius > 1 or
                    point[1] - radius < 0 or point[1] + radius > 1 or
                    point[2] - radius < 0 or point[2] + radius > 1):
                    break
                # 计算当前气球的体积
                volume = calculate_volume(point, radius)
                total_volume += volume
                # 增加半径
                radius += 0.1
        return total_volume
    
    # 计算总体积
    total_volume = expand_balloons(points)
    print(f"总体积: {total_volume}")

最短加链法问题 

最短加链法问题是一个经典的算法问题,它要求找到一个整数序列,使得序列中的每个数都是前两个数的和,并且从1开始,通过连续相加得到一个给定的数,同时使得相加的次数最少。

算法思路

解决最短加法链问题通常采用动态规划方法。基本步骤如下:

  • 初始化:创建一个数组 dp,其中 dp[i] 表示从1开始到达 i 的最短加法链长度。初始化 dp[1] = 0,因为到达1不需要任何加法。
  • 状态转移:对于每个 i(从2到 n),检查所有小于 i 的整数 j,如果 i 可以表示为 j 和 i−j 的和,那么更新 dp[i]
  • 迭代:遍历所有 i 从2到 n,对于每个 i,使用上述状态转移方程更新 dp[i]
  • 结果dp[n] 就是从1加到 n 的最短加法链长度。
    def shortest_addition_chain(n):
        dp = [0] * (n + 1)
        for i in range(2, n + 1):
            dp[i] = float('inf')
        for i in range(2, n + 1):
            for j in range(1, i):
                if i % j == 0:
                    dp[i] = min(dp[i], dp[j] + 1)
        return dp[n]
    
    n1 = 10
    n2 = 26
    print(f"从1加到{n1}最短加法链的步数是{shortest_addition_chain(n1)}")
    print(f"从1加到{n2}最短加法链的步数是{shortest_addition_chain(n2)}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值