盒子里的气球问题
这个问题可以看作是一个优化问题,我们需要找到一种放置气球的顺序,使得所有气球占据的总体积最大。这可以通过模拟气球膨胀的过程,并在每一步选择最优的放置点来实现。
解题思路:
-
定义盒子和点:
- 假设盒子是一个长方体,其尺寸为 l×w×hl×w×h。
- 盒子内有 NN 个点,每个点的坐标为 (xi,yi,zi)(xi,yi,zi)。
-
模拟气球膨胀:
- 每个气球从一个小点开始膨胀,直到它接触到其他气球或盒子的边界。
- 气球膨胀时,它会在所有方向上均匀膨胀。
-
计算气球体积:
- 气球的体积 VV 可以通过计算它占据的立方体空间来确定。
-
选择最优放置点:
- 在每一步中,我们需要选择一个点来放置气球,使得剩余空间被最大化利用。
- 这可以通过计算每个点放置气球后剩余空间的体积,并选择体积最大的点来实现。
-
迭代过程:
- 重复上述过程,直到所有点都被放置了气球。
import numpy as np # 盒子的尺寸 l, w, h = 1, 1, 1 # 点的坐标 points = np.array([ [0.1, 0.1, 0.1], [0.5, 0.5, 0.5], [0.9, 0.9, 0.9], # 添加更多点... ]) # 计算气球体积的函数 def calculate_volume(point, radius): return (4/3) * np.pi * radius**3 # 模拟气球膨胀的过程 def expand_balloons(points): total_volume = 0 for point in points: # 假设气球从一个小点开始膨胀 radius = 0.1 while True: # 检查气球是否接触到边界或其他气球 if (point[0] - radius < 0 or point[0] + radius > 1 or point[1] - radius < 0 or point[1] + radius > 1 or point[2] - radius < 0 or point[2] + radius > 1): break # 计算当前气球的体积 volume = calculate_volume(point, radius) total_volume += volume # 增加半径 radius += 0.1 return total_volume # 计算总体积 total_volume = expand_balloons(points) print(f"总体积: {total_volume}")
最短加链法问题
最短加链法问题是一个经典的算法问题,它要求找到一个整数序列,使得序列中的每个数都是前两个数的和,并且从1开始,通过连续相加得到一个给定的数,同时使得相加的次数最少。
算法思路
解决最短加法链问题通常采用动态规划方法。基本步骤如下:
- 初始化:创建一个数组
dp
,其中dp[i]
表示从1开始到达 i 的最短加法链长度。初始化dp[1] = 0
,因为到达1不需要任何加法。 - 状态转移:对于每个 i(从2到 n),检查所有小于 i 的整数 j,如果 i 可以表示为 j 和 i−j 的和,那么更新
dp[i]
。 - 迭代:遍历所有 i 从2到 n,对于每个 i,使用上述状态转移方程更新
dp[i]
。 - 结果:
dp[n]
就是从1加到 n 的最短加法链长度。def shortest_addition_chain(n): dp = [0] * (n + 1) for i in range(2, n + 1): dp[i] = float('inf') for i in range(2, n + 1): for j in range(1, i): if i % j == 0: dp[i] = min(dp[i], dp[j] + 1) return dp[n] n1 = 10 n2 = 26 print(f"从1加到{n1}最短加法链的步数是{shortest_addition_chain(n1)}") print(f"从1加到{n2}最短加法链的步数是{shortest_addition_chain(n2)}")