蓝桥杯备赛(2)-二分与前缀和
概念
二分:其主要能解决区间问题。针对的问题:首先确定满足答案的区间,然后选择一个判决条件,使得该区间具有二段性,且我们的答案就在分界点处。
前缀和:通过累加和来确定答案,有时候有奇效。
二分模板
l=-1
r=n-1
while l!=n-1:
mid=l+r>>1
if ():
l=mid
else:
r=mid
return l or r
#该模板是最好用的模板,无需判断是否+1或者-1
Q1
数的范围(点击链接原题)
A1
由题意,输入集合有序,故我们只需刚开始就进行特判(其是否在数组中,ps:不能特判其是否小于最小值or大于最大值,这是错误的)。由于有序且寻找分界点,故我们只需进行二分查找即可(logn的复杂度,可在较长数组中进行多次查询,常规查询(n的复杂度)一定会TLE)。
代码如下:
n,q=map(int,input().split())
lst=list(map(int,input().split()))
def get_start(num):
l=-1
r=n
while l!=r-1:
mid=l+r>>1
if lst[mid]>=num:
r=mid
else:
l=mid
return r
def get_end(num):
l=-1
r=n
while l!=r-1:
mid=l+r>>1
if lst[mid]<=num:
l=mid
else:
r=mid
return l
for _ in range(q):
num=int(input())
if num not in lst:
#不在
print('-1 -1')
else:
print('{} {}'.format(get_start(num),get_end(num)))
Q2
机器人跳跃问题(点击链接原题)
A2
由题意,我首先想到的是能否初始化为0,然后遍历每个位置,取min的相反数为res。但由于2*E的缘故,说明并非线性(此处指的是不清楚初始值跟结果的关系)结果。由于数据量不大,并且答案具有二分性(一般可行,一半不可行),由于我们是要找最值(一般是分界点),故我们可以采取二分查找算法。
代码如下:
n=int(input())
high_list=list(map(int,input().split(' ')))
l=0
r=100000
def check(init_e):
E=init_e
for i in range(n):
if E<0:
return False
else:
E=2*E-high_list[i]
if E<0:
return False
return True
while l+1!=r:
mid=(l+r)>>1
if check(mid):
r=mid
else:
l=mid
print(r)
Q3
四平方和(点击链接原题)
A3
如果暴力枚举四重循环的话,一定会TLE。这里优化首先构造字典序,存储下二平方和。然后再进行二重枚举,利用空间换取时间。
代码如下:(但该python代码依旧会超时)
from math import sqrt
import sys
#1221:四平方和(如何利用空间换时间)
#首先使用c^2+d^2存储下来(构造映射),然后枚举a,b,进行哈希判断+二分。
N=int(input())
dic={}
for c in range(int(sqrt(N))):
for d in range(c,int(sqrt(N-c**2))+2):
dic.setdefault(c**2+d**2,[c,d])
#这里必须使其有序(用冒泡排序)
dic=dict(sorted(dic.items(),key=lambda x:x[0]))
sum_list=list(dic.keys())
cd_list=list(dic.values())
for a in range(int(sqrt(N))):
for b in range(a,int(sqrt(N-a**2))+2):
s=N-a**2-b**2
#此处利用二分查找(需要有序)
l=-1
r=len(dic)
while l+1!=r:
mid=(l+r)>>1
if sum_list[mid]>=s:
r=mid
else:
l=mid
if s ==sum_list[r]:
print('{} {} {} {}'.format(str(a),str(b),str(cd_list[r][0]),str(cd_list[r][1])))
break
以下代码便不会超时,二分的复杂度不应该更低么?奇怪,get函数真强大!
n = int(input())
dic = {}
# 建立字典
c, d = 0, 0
while c * c <= n:
d = c
while c * c + d * d <= n:
if dic.get(c * c + d * d) == None:
dic[c * c + d * d] = (c, d)
d += 1
c += 1
flag = False # 标记查询是否成立
# 查询
a, b = 0, 0
while a * a <= n:
b = a
while a * a + b * b <= n:
x = n - a * a - b * b
if dic.get(x) != None:
flag = True
print(a, b, dic[x][0], dic[x][1])
break
b += 1
if flag:
break
a += 1
Q4
分巧克力(点击链接原题)
A4
该题比较简单,阔以类似机器人跳跃那题的思路,我们阔以枚举所有可行解(有区间并且具有二段性)。
代码如下:
n,k=map(int,input().split())
h_lst=[]
w_lst=[]
for _ in range(n):
h,w=map(int,input().split())
h_lst.append(h)
w_lst.append(w)
def check(a):
res=0
for i in range(n):
res+=(h_lst[i]//a)*(w_lst[i]//a)
if res>=k:
return True
return False
l=0
r=int(1e5)
while l+1!=r:
mid=l+r>>1
if check(mid):
l=mid
else:
r=mid
print(l)
Q4
激光炸弹(点击链接原题)
A4
该题采取前缀和进行求解,常规求解。但需要注意,需要保留h[0][0]行作为初始值,不然减出错。同时需要注意R的范围,可能大于范围。
代码如下:
n,r = map(int,input().split())
r = min(r, 5001)
mp = [[0 for i in range(5010)]for j in range(5010)]
x,y = r,r
while n:
a,b,c = map(int,input().split())
a += 1; b += 1
mp[a][b] += c
x = max(x,a); y = max(y,b)
n -= 1
for i in range(1,x+1):
for j in range(1,y+1):
mp[i][j] += mp[i-1][j] + mp[i][j-1] -mp[i-1][j-1]
res = 0
for i in range(r,x+1):
for j in range(r,y+1):
res = max(res, mp[i][j] - mp[i-r][j] - mp[i][j-r] + mp[i-r][j-r])
print(res)
Q5
K倍区间(点击链接原题)
A5
前缀和题,特点:转换为同余–>整除。最为醒目的一步,大大降低复杂度。
代码如下:
n,k=map(int,input().split())
sum_k=[0 for _ in range(k)]
s=0
ans=0
for _ in range(n):
s=(s+int(input()))%k
sum_k[s]+=1
for i in range(k):
if sum_k[i]>=2:
ans+=sum_k[i]*(sum_k[i]-1)//2
print(ans+sum_k[0])
总结
二分用来求解区间性问题,前缀和用来求解包含和式的问题。