【云星数据---Apache Flink实战系列(精品版)】:Apache Flink批处理API详解与编程实战006--DateSet实用API详解006

183 篇文章 0 订阅
86 篇文章 58 订阅

DateSet的API详解六

ReduceGroup

def reduceGroup[R](fun:(Iterator[T])⇒R)(implicit arg0:TypeInformation[R],arg1:ClassTag[R]):DataSet[R]

def reduceGroup[R](fun: (Iterator[T], Collector[R]) ⇒ 
Unit(implicit arg0: TypeInformation[R], arg1: ClassTag[R]): DataSet[R]

def reduceGroup[R](reducer: GroupReduceFunction[T, R])
(implicit arg0: TypeInformation[R], arg1: ClassTag[R]): DataSet[R]

Creates a new DataSet by passing all elements in this DataSet to the group reduce function.

此函数和reduce函数类似,不过它每次处理一个grop而非一个元素。

ReduceGroup示例一,操作tuple

执行程序:

//1.定义 DataSet[(Int, String)]
val input: DataSet[(Int, String)] = benv.fromElements(
(20,"zhangsan"),(22,"zhangsan"),
(22,"lisi"),(20,"zhangsan"))

//2.先用string分组,然后对分组进行reduceGroup
val output = input.groupBy(1).reduceGroup {
     //将相同的元素用set去重
     (in, out: Collector[(Int, String)]) =>
        in.toSet foreach (out.collect)
}

//3.显示结果
output.collect

执行结果:

res14: Seq[(Int, String)] = Buffer((22,lisi), (20,zhangsan), (22,zhangsan))

web ui中的执行效果:
这里写图片描述

ReduceGroup示例二,操作case class

//1.定义case class
case class Student(age: Int, name: String)

//2.创建DataSet[Student]
val input: DataSet[Student] = benv.fromElements(
Student(20,"zhangsan"),
Student(22,"zhangsan"),
Student(22,"lisi"),
Student(20,"zhangsan"))
//3.以age进行分组,然后对分组进行reduceGroup
val output = input.groupBy(_.age).reduceGroup {
      //将相同的元素用set去重
      (in, out: Collector[Student]) =>
        in.toSet foreach (out.collect)
 }

//4.显示结果
output.collect

执行结果:

res16: Seq[Student] = Buffer(Student(20,zhangsan), Student(22,zhangsan), Student(22,lisi))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值