一篇学会如何在生产环境下使用kafka+SpringBoot+sparkStreaming对用户日常行为进行大数据分析处理
注意:本文适用于已经掌握基础java框架想学习大数据的开发者
建议收藏,否则容易找不到
之前的文章中streaming处理的数据主要用于学习streaming的一些基础使用,在实际生产环境下还是需要使用专门的日志收集。
kafka&&zookeeper下载地址:https://download.csdn.net/download/lihao1107156171/18254437
代码所在地址:https://gitee.com/lihao2/blog-code
在实际项目中,如果想要进行大数据处理操作,我们首先需要先获取用户日志(这里说的日志指的是用户进入软件后的操作记录),然后才可以处理。为保证用户日志的操作不影响整体软件的运行,我们需要使用消息队列进行异步操作,这样的话日志记录不影响整个应用效率
什么是Kafka
kafka一个 分布式的消息队列,所谓消息队列简单讲就是一个负责数据发送的应用程序,消息队列把一个数据(消息)发给另外一个应用,提高应用响应时间。
常用的消息队列有activeMQ,RabbitMQ等,他们每个都有自己的优点特征,这里我们不再逐个描述 。我们主要说明kafka
kafka最大的优点是高吞吐量(简单讲就是处理数据速度非常快),所以我们一般选择使用kafka作为日志收集系统
安装Zookeeper
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,kafka是基于zookeeper协调,所以首先我们需要安装zookeeper,这里也注意在kafka安装包下也有zookeeper,也可以使用它的。
1、解压zookeeper安装包
2、在bin目录下有zkServer.cmd文件,双击即可运行
安装kafka
1、下载解压kafka_2.12-2.5.0
2、进入\bin\windows目录下,在地址栏敲cmd进入命令窗口,运行命令 kafka-server-start.bat server.properties ,注意先开启zookeeper
编写SpringBoot项目发送kafka
我们安装完kafka,我们需要一个后端代码作为消息的发送者,注意项目环境是一个springBoot项目,需要先搭建springBoot项目环境
首先在pom文件中添加kafka依赖
1、jar包
<!-- kafka -->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
2、修改项目中的application.yml文件,添加kafka地址
server:
port: 8089 #项目端口号
spring:
kafka:
producer:
bootstrap-servers: 127.0.0.1:9092 # kafka地址
3、开始编写发送者(生产者)代码,进入项目controller层,创建MsgController类用于接收前端请求,向kafka发送数据
@RestController
public class MsgController {
/* 发送kafka */
@Autowired
@SuppressWarnings("all")
private KafkaTemplate<String, String> kafkaTemplate;
@GetMapping("sendK")
public String send(){
// kafkaTemplate.send(消息名称,消息数据) // 向kafka发送消息
// token~用户ID~用户点击商品ID~商品类别ID~操作时间
String log = "zasdad~1~46~23~2021-04-15 09:04:00";
kafkaTemplate.send("streaming",log);
return "SUCCESS";
}
}
上面就是springBoot项目如何向kafka发送日志了。总结下使用方法
小结
先开服务,首开zk再开ka;
代码编写,一jar包,二配置,三使用
streaming接收kafka
我们在后端发送完日志信息后需要编写Streaming接收kafka消息,首先也是现在原有项目pom文件下配置jar包
1、放jar包
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>2.4.4</version>
</dependency>
jar包下载完成后,就需要编写项目主要内容,处理kafka端发送过来的日志了
2、创建新类编写main方法
def main(args: Array[String]): Unit = {
// StreamingContext(spark配置,时间间隔)
val ssc = new StreamingContext(
new SparkConf().setAppName("streaming")
.setMaster("local[2]"),Seconds(10)
)
// 设置日志级别
ssc.sparkContext.setLogLevel("ERROR")
// 设置检查点
ssc.checkpoint("./check_port")
// 定义kafka的相关参数
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "127.0.0.1:9092", // kafka位置
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"key.serializer" -> "org.apache.kafka.common.serialization.StringSerializer",
"value.serializer" -> "org.apache.kafka.common.serialization.StringSerializer",
"group.id" -> "spark", // 消费者组织ID
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean))
// 开始读取kafka中发送过来的数据
val data = KafkaUtils.createDirectStream(
ssc,LocationStrategies.PreferConsistent
,ConsumerStrategies
.Subscribe[String,String](List("streaming"),kafkaParams)// (消息名称,kafka参数)
)
// 获得发送的值 打印
data.map(_.value()).print()
ssc.start()
ssc.awaitTermination()
}
首先运行springBoot项目中启动类main方法,启动成功后运行Streaming类中的main方法,放我们在浏览器去访问 http://127.0.0.1:8089/sendK 的时候就开始访问MsgController,此时进入send方法,然后把消息发送给kafka,Streaming项目实时监听着kafka,读取kafka中的消息,然后处理。
实现开发环境中发送过来的日志是多种多样的动态的,streaming中也是有专门的配置类去配置kafka,这里的话我们简单写,重点是多个软件之间最简单的协调处理
我们用最简单的代码讲述最核心的技术,如果您感觉文章对您有帮助的话,点个赞呗