Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
这个题我想了好久,目前只想到了递归的解决方法,代码如下:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==NULL)
return NULL;
if(root==p||root==q){
return root;
}
TreeNode* left=lowestCommonAncestor(root->left,p,q);
TreeNode* right=lowestCommonAncestor(root->right,p,q);
if(left==NULL&&right==NULL)
return NULL;
else if(left!=NULL&&right!=NULL)
return root;
else
return left?left:right;
}
};
大致的思路如下:
对于某个节点A,有三种情况:
1>为空,返回空;
2>为p,q中的某一个,说明A节点肯定在LCA到p和q的两条路径中的某一个,返回A;
3>对A的左右孩子递归使用函数,得到left和right,此时又分三种情况;
3.1>left和right都为空,说明A肯定不再LCA到p和q的路径上,返回空;
3.2>left和right都不为空,说明A是p,q的lowest common ancestor ,返回A;
3.3>left和right中一个为空,一个不为空。返回不为空的节点,因为不为空说明该节点肯定在LCA到p和q的路径上。
代码行数比较多,我看到有4行代码解决的。其实他的意思和我的一样,懒得压缩了,而且感觉我这样写挺直观的,有空在想下非递归的方法。