斐波那契数列(Fibonacci sequence)及相关问题介绍

本文介绍了斐波那契数列的概念,它是由意大利数学家斐波那契提出的。文中详细讨论了如何通过递归、数组法(内存法)和平推法(循环法)解决斐波那契数列的计算问题,给出了相应的代码示例,并分析了各种方法的时间复杂度和空间复杂度。此外,还探讨了爬楼梯问题,将其与斐波那契数列的解题思路联系起来。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍斐波那契数列(Fibonacci sequence)的相关知识,同时通过示例代码介绍相关问题的解决方法。

1 概述

Fibonacci sequence, the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, …, each of which, after the second, is the sum of the two previous numbers; that is, the nth Fibonacci number F(n) = F(n − 1) + F(n − 2).

The sequence was noted by the medieval Italian mathematician Fibonacci (Leonardo Pisano) in his Liber abaci.

2 相关问题

2.1 Fibonacci Number

题目描述:

已知有一个Fibonacci sequence,给定n作为数列的位置,求该位置的数值。

此题通常有三种解法,分别为:递归法、数组法(内存法)及平推法(循环法)。

下面分别给出这三种解法的示例代码。

2.1.1 递归法

使用递归法解决Fibonacci Number问题的示例代码如下:


class Solution {
public:
    // calculate the value with recursion
    int fib(int n) {
        if (0 == n || 1 == n) {
            return n;
        }
        return fib(n - 1) + fib(n - 2);
    }
};

递归法对应的时间复杂度为:O(2^n),空间复杂度为:O(n)。

2.1.2 数组法(内存法)

使用数组法解决Fibonacci Number问题的示例代码如下:


class Solution {
public:
    // dynamic programming approach
    int fib(int n) {
        if (n < 2) {
            return n;
        }
        
        int mem[n + 1];
        mem[0] = 0;
        mem[1] = 1;
        for (int i = 2; i <= n; i++) {
            mem[i] = mem[i - 1] + mem[i - 2];
        }
        
        return mem[n];
    }
};

数组法对应的时间复杂度为:O(n),空间复杂度为:O(n)。

2.1.3 平推法(循环法)

使用平推法解决Fibonacci Number问题的示例代码如下:


class Solution {
public:
    // with imperative approach
    int fib(int n) {
        if (n < 2) {
            return n;
        }
        int prevprev = 0;
        int prev = 1;
        int cur = 0;
        for (int i = 1; i < n; i++) {
            cur = prevprev + prev;
            prevprev = prev;
            prev = cur;
        }

        return cur;
    }
};

平推法对应的时间复杂度为:O(n),空间复杂度为:O(1)。

2.2 Climbing Stairs

题目描述:

You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

分析思路:此题本质上就是Fibonacci sequence问题。对于第“n”个台阶,之前的情况只有两种可能:在“n-1”个台阶跨1步上去;或在“n-2”个台阶跨2步上去(因为根据题干,我们一步只能跨1个或2个台阶,这点至关重要!)。因此,达到第“n”个台阶的方法数量就满足Fibonacci sequence了:F(n) = F(n - 1) + F(n - 2)。当然,这里“n”必须要大于2,因为台阶数为0是没有意义的。

有了上述分析思路,就可以参考2.1节Fibonacci Number问题的解法来解答此问题了(但需注意“n”需大于2)。

这里给出平推法的示例代码:


class Solution {
public:
    // with imperative approach
    int climbStairs(int n) {
        if (n < 3) {
            return n;
        }
        int prevprev = 1;
        int prev = 2;
        int cur = 0;
        for (int i = 2; i < n; i++) {
            cur = prevprev + prev;
            prevprev = prev;
            prev = cur;
        }
        return cur;
    }
};

从上述代码可以看到,我们是基于“n”大于2来计算Fibonacci sequence的数值的,而2.1.3节中的平推法是基于“n”大于1来计算的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liitdar

赠人玫瑰,手有余香,君与吾共勉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值