本文主要介绍斐波那契数列(Fibonacci sequence)的相关知识,同时通过示例代码介绍相关问题的解决方法。
1 概述
Fibonacci sequence, the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, …, each of which, after the second, is the sum of the two previous numbers; that is, the nth Fibonacci number F(n) = F(n − 1) + F(n − 2).
The sequence was noted by the medieval Italian mathematician Fibonacci (Leonardo Pisano) in his Liber abaci.
2 相关问题
2.1 Fibonacci Number
题目描述:
已知有一个Fibonacci sequence,给定n作为数列的位置,求该位置的数值。
此题通常有三种解法,分别为:递归法、数组法(内存法)及平推法(循环法)。
下面分别给出这三种解法的示例代码。
2.1.1 递归法
使用递归法解决Fibonacci Number问题的示例代码如下:
class Solution {
public:
// calculate the value with recursion
int fib(int n) {
if (0 == n || 1 == n) {
return n;
}
return fib(n - 1) + fib(n - 2);
}
};
递归法对应的时间复杂度为:O(2^n),空间复杂度为:O(n)。
2.1.2 数组法(内存法)
使用数组法解决Fibonacci Number问题的示例代码如下:
class Solution {
public:
// dynamic programming approach
int fib(int n) {
if (n < 2) {
return n;
}
int mem[n + 1];
mem[0] = 0;
mem[1] = 1;
for (int i = 2; i <= n; i++) {
mem[i] = mem[i - 1] + mem[i - 2];
}
return mem[n];
}
};
数组法对应的时间复杂度为:O(n),空间复杂度为:O(n)。
2.1.3 平推法(循环法)
使用平推法解决Fibonacci Number问题的示例代码如下:
class Solution {
public:
// with imperative approach
int fib(int n) {
if (n < 2) {
return n;
}
int prevprev = 0;
int prev = 1;
int cur = 0;
for (int i = 1; i < n; i++) {
cur = prevprev + prev;
prevprev = prev;
prev = cur;
}
return cur;
}
};
平推法对应的时间复杂度为:O(n),空间复杂度为:O(1)。
2.2 Climbing Stairs
题目描述:
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
分析思路:此题本质上就是Fibonacci sequence问题。对于第“n”个台阶,之前的情况只有两种可能:在“n-1”个台阶跨1步上去;或在“n-2”个台阶跨2步上去(因为根据题干,我们一步只能跨1个或2个台阶,这点至关重要!)。因此,达到第“n”个台阶的方法数量就满足Fibonacci sequence了:F(n) = F(n - 1) + F(n - 2)。当然,这里“n”必须要大于2,因为台阶数为0是没有意义的。
有了上述分析思路,就可以参考2.1节Fibonacci Number问题的解法来解答此问题了(但需注意“n”需大于2)。
这里给出平推法的示例代码:
class Solution {
public:
// with imperative approach
int climbStairs(int n) {
if (n < 3) {
return n;
}
int prevprev = 1;
int prev = 2;
int cur = 0;
for (int i = 2; i < n; i++) {
cur = prevprev + prev;
prevprev = prev;
prev = cur;
}
return cur;
}
};
从上述代码可以看到,我们是基于“n”大于2来计算Fibonacci sequence的数值的,而2.1.3节中的平推法是基于“n”大于1来计算的。