现在我们有2015到2017年25万条911的紧急电话的数据,请统计出出这些数据中不同类型的紧急情况的次数,如果我们还想统计出不同月份不同类型紧急电话的次数的变化情况,应该怎么做呢?
数据来源:https://www.kaggle.com/mchirico/montcoalert/data
**
统计出这些数据中不同类型的紧急情况的次数,
**
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
file_path='C:/Users/ming/Desktop/DataAnalysis-master/day06/code/911.csv'
df=pd.read_csv(file_path)
# print(df.info())
# # 显示所以的列
# pd.set_option('display.max_columns', None)
# print(df.head(10))
# 获取分类
# print(df['title'].str.split(': '))
temp_list=df['title'].str.split(': ').tolist()
# print(temp_list)
cate_list=list(set(i[0] for i in temp_list))
print(cate_list)
# 构造全为0的数组
zeros_df=pd.DataFrame(np.zeros((df.shape[0],len(cate_list))),columns=cate_list)
# 赋值
for cate in cate_list:
zeros_df[cate][df['title'].str.contains(cate)]=1
# print(zeros_df)
# for i in range(df.shape[0]):
# zeros_df.loc[i,temp_list[i][0]]=1
# print(zeros_df)
sum_ret=zeros_df.sum(axis=0)
print(sum_ret)
法2
# coding=utf-8
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
df = pd.read_csv("./911.csv")
print(df.head(5))
#获取分类
# print()df["title"].str.split(": ")
temp_list = df["title"].str.split(": ").tolist()
cate_list = [i[0] for i in temp_list]
# 多建立cate这一列
df["cate"] = pd.DataFrame(np.array(cate_list).reshape((df.shape[0],1)))
# print(df.head(5))
print(df.groupby(by="cate").count()["title"])
pandas中的时间序列
生成一段时间范围
pd.date_range(start=None, end=None, periods=None, freq='D')
start和end以及freq配合能够生成start和end范围内以频率freq的一组时间索引
start和periods以及freq配合能够生成从start开始的频率为freq的periods个时间索引
关于频率的更多缩写
在DataFrame中使用时间序列
index=pd.date_range("20170101",periods=10)
df = pd.DataFrame(np.random.rand(10),index=index)
# 回到最开始的911数据的案例中,我们可以使用pandas提供的方法把时间字符串转化为时间序列
df["timeStamp"] = pd.to_datetime(df["timeStamp"],format="")
# format参数大部分情况下可以不用写,但是对于pandas无法格式化的时间字符串,我们可以使用该参数,比如包含中文
pandas重采样
重采样:指的是将时间序列从一个频率转化为另一个频率进行处理的过程,将高频率数据转化为低频率数据为降采样,低频率转化为高频率为升采样
pandas提供了一个resample的方法来帮助我们实现频率转化
统计出911数据中不同月份电话次数的变化情况
# coding=utf-8
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
df = pd.read_csv("C:/Users/ming/Desktop/DataAnalysis-master/day06/code/911.csv")
# 获取指定的时间和日期
df["timeStamp"] = pd.to_datetime(df["timeStamp"])
# inplace:将结果返回为原变量
df.set_index("timeStamp",inplace=True)
# # # 显示所以的列
# pd.set_option('display.max_columns', None)
# print(df.head(5))
# #统计出911数据中不同月份电话次数的
count_by_month = df.resample("M").count()["title"]
print(count_by_month)
#画图
_x = count_by_month.index
_y = count_by_month.values
# for i in _x:
# print(dir(i))
# break
# 原例子是2015-12-10 17:10:52,strftime("%Y%m%d")分割只显示年月日
_x = [i.strftime("%Y%m%d") for i in _x]
plt.figure(figsize=(20,8),dpi=80)
plt.plot(range(len(_x)),_y)
plt.xticks(range(len(_x)),_x,rotation=45)
plt.show()
统计出911数据中不同月份不同类型的电话的次数的变化情况
# coding=utf-8
#911数据中不同月份不同类型的电话的次数的变化情况
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
#把时间字符串转为时间类型设置为索引
df = pd.read_csv("./911.csv")
df["timeStamp"] = pd.to_datetime(df["timeStamp"])
#添加列,表示分类
temp_list = df["title"].str.split(": ").tolist()
cate_list = [i[0] for i in temp_list]
# print(np.array(cate_list).reshape((df.shape[0],1)))
df["cate"] = pd.DataFrame(np.array(cate_list).reshape((df.shape[0],1)))
# 先分类再添加新的索引
df.set_index("timeStamp",inplace=True)
# print(df.head(1))
plt.figure(figsize=(10, 6), dpi=80)
#分组
for group_name,group_data in df.groupby(by="cate"):
#对不同的分类都进行绘图
count_by_month = group_data.resample("M").count()["title"]
# 画图
_x = count_by_month.index
print(_x)
_y = count_by_month.values
_x = [i.strftime("%Y%m%d") for i in _x]
plt.plot(range(len(_x)), _y, label=group_name)
plt.xticks(range(len(_x)), _x, rotation=45)
plt.legend(loc="best")
plt.show()