题目
给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例1
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例2
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
示例 3
输入:matrix = [[1]]
输出:[[1]]
示例 4:
输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rotate-image
思路
看到这个题,首先想到了想到了向量,比如我可以将每个数组看做矩阵中的一个数字,其坐标就是索引。n=1时中心点为(0,0),n=2时中心点为(1/2,1/2),n=3时中心点为(1,1),以此类推。可以计算出矩阵中心到每个点的向量,旋转90度后的点与之前点到中心点的向量内积为0。
但是,这个可以在拿到两个点之后判断它们是不是90度的关系,而不能从一个点出发找到顺时针旋转90度后的位置,遂改变思路。
以n=4为例,以(0,1)这个点为例,它顺时针旋转90度后的位置是(1,3),(1,3)旋转90度后的位置是(3,2),(3,2)旋转90度后的位置是(1,0),(1,0)旋转90度后的位置是(0,1)。可以发现从第一行的所有点出发,可以将矩阵的最外层的旋转链找到。而且每个点与下一个点的关系为 m a t r i x n e w [ c o l ] [ n − 1 − r o w ] = m a t r x [ r o w ] [ c o l ] matrix_{new}[col][n-1-row] = matrx[row][col] matrixnew[col][n−1−row]=matrx[row][col]
于是,我们可以通过遍历每一层的方式,进行旋转。每一层内的旋转,都只需要从第一行出发把一圈处理完即可。
其实这个题目明显是矩阵翻转,矩阵旋转=矩阵翻转+对角翻转,官方解法有此思路,可以了解。最终落实在代码上很相近,但是出发点更接近数学公式,很有意思。
代码
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; i++) {
for (int j = i; j < n - 1 - i; j++) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[n-1-j][i];
matrix[n-1-j][i] = matrix[n-1-i][n-1-j];
matrix[n-1-i][n-1-j] = matrix[j][n-1-i];
matrix[j][n-1-i] = tmp;
}
}
}
}
复杂度分析
时间复杂度
O
(
n
2
)
O(n^{2})
O(n2) ,遍历数组
空间复杂度
O(1)
用时
52分钟