题目描述
X 星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x 星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
X 星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的 2 楼。
如果手机从第 7 层扔下去没摔坏,但第 8 层摔坏了,则手机耐摔指 =7。 特别地,如果手机从第 1 层扔下去就坏了,则耐摔指数 =0。 如果到了塔的最高层第 n 层扔没摔坏,则耐摔指数 =n。
为了减少测试次数,从每个厂家抽样 3 部手机参加测试。
某次测试的塔高为 1000 层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
请填写这个最多测试次数。
解题代码
//3部手机,1000层楼,最坏需要测试几次
//该算法可用递归+二分进行优化,这里作为填空题直接暴力递归即可
public class Main {
//备忘录,防止重复循环,给一个维度较大的值即可
private static int[][] memo=new int[3000][3000];
public static void main(String[] args) {
System.out.println(dp(3, 1000));
}
//m个手机,第n层楼开始丢
private static int dp(int m,int n) {
//定义一个较大的值
int ans = 1000;
//只有一个手机时,需要测n次
if(m==1) return n;
//楼层为0时,不用测试
if(n==0) return 0;
//记录过,直接返回
if((memo[m][n]>=1)) return memo[m][n];
//遍历楼层数
for(int i=1;i<=n;i++) {
//分手机碎和没碎两种情况写状态转移方程
//min表示“至少”,max表示“最坏”
ans = Math.min(Math.max(dp(m, n-i), dp(m-1, i-1))+1,ans);
//表示记录过
memo[m][n] = ans;
}
return ans;
}
}