二、八、十、十六进制互相转换

为什么需要八进制和十六进制?

 

编程中,我们常用的还是10进制……必竟C/C++是高级语言。

比如:

int a = 100,b = 99;

不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。

但,二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是:

0000 0000 0000 0000 0110 0100

面对这么长的数进行思考或操作,没有人会喜欢。因此,C,C++ 没有提供在代码直接写二进制数的方法。

 

用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?

2、8、16,分别是2的1次方,3次方,4次方。这一点使得三种进制之间可以非常直接地互相转换。8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。在下面的关于进制转换的课程中,你可以发现这一点。

 

 二、八、十六进制数转换到十进制数

 

 二进制数转换为十进制数

二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……

所以,设有一个二进制数:0110 0100,转换为10进制为:

下面是竖式:

 

0110 0100 换算成 十进制

 

第0位 0 * 20  =  0

第1位 0 * 21  =  0

第2位 1 * 22  =  4

第3位 0 * 23  =  0

第4位 0 * 24  =  0

第5位 1 * 25  = 32

第6位 1 * 26  = 64

第7位 0 * 27  =  0     +

---------------------------

              100  

 

用横式计算为:

0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100

 

0乘以多少都是0,所以我们也可以直接跳过值为0的位:

1 * 22 + 1 * 23 +  1 * 25 + 1 * 26 = 100

 

 八进制数转换为十进制数

八进制就是逢8进1。

八进制数采用 0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……

所以,设有一个八进制数:1507,转换为十进制为:

用竖式表示:

 

1507换算成十进制。

 

第0位 7 * 80 = 7

第1位 0 * 81 = 0

第2位 5 * 82 = 320

第3位 1 * 83 = 512   +

--------------------------

              839

同样,我们也可以用横式直接计算:

7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839

 

结果是,八进制数 1507 转换成十进制数为 839

 

 八进制数的表达方法

C,C++语言中,如何表达一个八进制数呢?如果这个数是 876,我们可以断定它不是八进制数,因为八进制数中不可能出7以上的阿拉伯数字。但如果这个数是123、是567,或12345670,那么它是八进制数还是10进制数,都有可能。

所以,C,C++规定,一个数如果要指明它采用八进制,必须在它前面加上一个0,如:123是十进制,但0123则表示采用八进制。这就是八进制数在C、C++中的表达方法。

由于C和C++都没有提供二进制数的表达方法,所以,这里所学的八进制是我们学习的,CtC++语言的数值表达的第二种进制法。

现在,对于同样一个数,比如是100,我们在代码中可以用平常的10进制表达,例如在变量初始化时:

 

int a = 100;

我们也可以这样写:

int a = 0144; //0144是八进制的100;一个10进制数如何转成8进制,我们后面会学到。

 

千万记住,用八进制表达时,你不能少了最前的那个0。否则计算机会通通当成10进制。不过,有一个地方使用八进制数时,却不能使用加0,那就是我们前面学的用于表达字符的“转义符”表达法。

 

 十六进制数转换成十进制数

2进制,用两个阿拉伯数字:0、1;

8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;

10进制,用十个阿拉伯数字:0到9;

16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?

 

16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……

所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?

 

用竖式计算:

 

2AF5换算成10进制:

 

第0位:  5 * 160 = 5

第1位:  F * 161 = 240

第2位:  A * 162 = 2560

第3位:  2 * 163 = 8192  +

-------------------------------------

                 10997 

直接计算就是:

5 * 160  + F * 161 + A * 162 + 2 * 163 = 10997

(别忘了,在上面的计算中,A表示10,而F表示15)

 

现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

假设有人问你,十进数 1234 为什么是 一千二百三十四?你尽可以给他这么一个算式:

1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100

 

如果不使用特殊的书写形式,16进制数也会和10进制相混。随便一个数:9876,就看不出它是16进制或10进制。

C,C++规定,16进制数必须以 0x开头。比如 0x1表示一个16进制数。而1则表示一个十进制。另外如:0xff,0xFF,0X102A,等等。其中的x也也不区分大小写。(注意:0x中的0是数字0,而不是字母O)

以下是一些用法示例:

 

int a = 0x100F;

int b = 0x70 + a;

 

至此,我们学完了所有进制:10进制,8进制,16进制数的表达方式。最后一点很重要,C/C++中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用达无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C++并不把它当成一个负数。

 

 十六进制数在转义符中的使用

 

转义符也可以接一个16进制数来表示一个字符。如在6.2.4小节中说的 '?' 字符,可以有以下表达方式:

 

'?'     //直接输入字符

'/77'   //用八进制,此时可以省略开头的0

'/0x3F' //用十六进制

 

同样,这一小节只用于了解。除了空字符用八进制数 '/0' 表示以外,我们很少用后两种方法表示一个字符。

 

 十进制数转换到二、八、十六进制数

进制数转换为2进制数

 

给你一个十进制,比如:6,如果将它转换成二进制数呢?

 

10进制数转换成二进制数,这是一个连续除2的过程:

把要转换的数,除以2,得到商和余数,

将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。

 

听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。

 

“把要转换的数,除以2,得到商和余数”。

 那么:

 要转换的数是6, 6 ÷ 2,得到商是3,余数是0。(不要告诉我你不会计算6÷3!)

 

“将商继续除以2,直到商为0……”

现在商是3,还不是0,所以继续除以2。

那就: 3 ÷ 2, 得到商是1,余数是1

 

“将商继续除以2,直到商为0……”

现在商是1,还不是0,所以继续除以2。

那就: 1 ÷ 2, 得到商是0,余数是1 (拿笔纸算一下,1÷2是不是商0余1!)

 

“将商继续除以2,直到商为0……最后将所有余数倒序排列”

好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!

 

6转换成二进制,结果是110。

 

把上面的一段改成用表格来表示,则为:

被除数计算过程余数
66/230
33/211
11/201

(在计算机中,÷用 / 来表示)

 

如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除:

(图:1)

请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。

说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。

 

6.3.2 10进制数转换为8、16进制数

 

非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。

 

来看一个例子,如何将十进制数120转换成八进制数。

 

用表格表示:

被除数计算过程余数
120120/8150
1515/817
11/801

 

120转换为8进制,结果为:170。

 

非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。

 

同样是120,转换成16进制则为:

被除数计算过程余数
120120/1678
77/1607

 

120转换为16进制,结果为:78。

 

请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。

 

6.4 二、十六进制数互相转换

 

二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

我们也一样,只要学完这一小节,就能做到。

首先我们来看一个二进制数:1111,它是多少呢?

你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。

然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23 = 8,然后依次是 22 = 4,21=2, 20 = 1。

 

记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

 

下面列出四位二进制数 xxxx 所有可能的值(中间略过部分)

 

仅4位的2进制数  快速计算方法   十进制值     十六进值

1111        = 8 + 4 + 2 + 1  = 15          F

1110        = 8 + 4 + 2 + 0  = 14          E

1101        = 8 + 4 + 0 + 1  = 13          D          

1100        = 8 + 4 + 0 + 0  = 12          C          

1011        = 8 + 4 + 0 + 1  = 11          B          

1010        = 8 + 0 + 2 + 0  = 10          A

1001        = 8 + 0 + 0 + 1  = 10          9

....

0001        = 0 + 0 + 0 + 1  = 1           1

0000        = 0 + 0 + 0 + 0  = 0           0

 

二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。

如(上行为二制数,下面为对应的十六进制):

 

1111 1101 , 1010 0101 , 1001 1011

 F    D   ,  A    5   ,  9    B  

 

反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?

先转换F:

看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。

接着转换 D:

看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。

所以,FD转换为二进制数,为: 1111 1011

 

由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。

比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:

被除数计算过程余数
12341234/16772
7777/16413 (D)
44/1604

 

结果16进制为: 0x4D2

 

然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。

其中对映关系为:

0100 -- 4

1011 -- D

0010 -- 2

 

同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。

下面举例一个int类型的二进制数:

01101101 11100101 10101111 00011011

我们按四位一组转换为16进制: 6D E5 AF 1B   

 

6.5 原码、反码、补码

 

结束了各种进制的转换,我们来谈谈另一个话题:原码、反码、补码。

 

我们已经知道计算机中,所有数据最终都是使用二进制数表达。

我们也已经学会如何将一个10进制数如何转换为二进制数。

不过,我们仍然没有学习一个负数如何用二进制表达。

 

比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:

00000000 00000000 00000000 00000101

5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。

现在想知道,-5在计算机中如何表示?

 

在计算机中,负数以其正值的补码形式表达

什么叫补码呢?这得从原码,反码说起。

 

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

比如 00000000 00000000 00000000 00000101 是 5的 原码。

 

反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)

比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。

称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。

反码是相互的,所以也可称:

11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。

 

补码:反码加1称为补码。

也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。

那么,补码为:

11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011

 

所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。

 

再举一例,我们来看整数-1在计算机中如何表示。

假设这也是一个int类型,那么:

 

1、先取1的原码:00000000 00000000 00000000 00000001

2、得反码:     11111111 11111111 11111111 11111110

3、得补码:     11111111 11111111 11111111 11111111

 

可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值