前言
**和 AI 打交道的核心关键在于“沟通”。**AI 就像是一个被蒙住眼睛的天才,它懂很多,但无法直接感知这个世界。只有通过我们的描述,它才能理解现实世界的样子。
这就好比你在给一个从未见过大海的人描述海浪的声音。如果你说“哗啦哗啦”,对方可能理解成下雨的声音;如果你说“像是无数巨大的丝绸在空中抖动”,画面感就完全不一样了。同样的,和 AI 交流就需要这样的“描述力”。
与 AI 沟通,提示词就是你的“表达能力”。就像学习一门新语言,这种能力需要不断练习才能提升。即使是像 Deepseek 这样强大的 AI,如果我们说不清楚自己想要什么,它也只能给出模糊不清的答案。
还有一点特别重要,AI 的“幻觉”问题。它就像是一个博学但有时会不自觉“脑补”的朋友。它可能会自信满满地编造不存在的数据,还会把不相关的信息联系在一起,又或者生成看似合理但实际错误的内容,所以我们要做 AI 幻觉的“执剑人”,时刻保持警惕。
换句话说,**AI 是一个强大的工具,但工具的使用效果取决于使用者的能力。**通过不断练习和保持警惕,我们才能真正发挥AI的价值,同时避免掉入“幻觉”的陷阱。
那么,如何用好这个“AI 神器”呢?给大家分享几个技巧。
1
常规提问模版
过去和 ChatGPT 这样的指令模型对话时,我们常常会使用很复杂的提示词模板。但 DeepSeek 不太一样,它更像一个擅长思考的伙伴,反而是简单清晰的表达方式效果更好。
非常推荐这个简单但超级实用的“四步提问法”:背景 + 任务 + 要求 + 补充。举个例子:
【背景】我是一家新开的咖啡馆店主;
【任务】需要一份开业促销方案;
【要求】预算1万元内,主要面向大学生群体;
【补充】我们店铺位于大学城,主打精品咖啡。
这个方法的妙处在于:
背景信息让 AI 理解你的处境;
具体任务明确你的需求;
限制条件指明关键要求;
补充说明添加重要细节。
这样提问不仅能让 DeepSeek 更好地理解你的需求,还能避免它理解偏差或者回答跑题。这就像和一个聪明的朋友交谈,你把情况说清楚了,他自然能给出更有针对性的建议。
记住,和 DeepSeek 对话,不需要太多花哨的技巧,保持简单清晰才是王道。它的推理能力很强,只要你把需求说明白,它就能理解你的意图,并给出令人惊喜的回答。
实操展示
先来看错误示范:
提问:写一个店铺开业促销的方案。
输出结果:
再来看正确示范:
提问:我是一家新开的咖啡馆店主,需要一份开业促销方案。预算1万元内,主要面向大学生群体。我们店铺位于大学城,主打精品咖啡。
输出结果:
2
分解复杂任务
现阶段 AI 由于上下文,模型能力等问题,其实在处理复杂任务的时候时常会出现“偷懒”这种情况,这种时候就需要我们帮 AI 拆解任务。
接下来用写一篇“远程办公的未来发展”的文章为例,告诉大家怎么一步步指导 AI 完成高质量写作。
第一步:让 AI 写出大纲
示例:“我想写一篇关于’远程办公的未来发展’的文章,请你帮我列出一个详细的大纲,包含引言、3~4 个主要论点,以及结论部分。每个主要论点下需要包含 2~3 个具体的小节。”
第二步:让 AI 根据大纲完善第一部分的内容
示例:“基于上面的大纲,请帮我详细展开引言部分。需要包含以下几点:远程办公的现状介绍、为什么这个话题现在很重要、文章将要讨论的主要方向。请用生动的例子和数据支持,语言要流畅自然。”
第三步:让 AI 根据大纲继续分批输出后面几部分的内容
示例:“请继续完成大纲中的第一个主要论点部分。请确保内容与引言自然衔接,并且要有具体的案例支持。每个小节建议 300~400 字左右,注意段落之间的过渡。如果涉及数据,请明确标注来源。”
第四步:让 AI 检查文章内容错误,核对信息
示例:“请仔细阅读整篇文章,重点检查:
1)文章中提到的数据和事实是否准确;
2)各部分之间的逻辑关系是否通顺;
3)是否存在前后矛盾的观点;
4)专业术语使用是否准确。如发现问题,请具体指出并给出修改建议。”
第五步:让 AI 阅读生成文章,并对文章进行优化
示例:请从以下几个方面优化这篇文章:
1)增加文章的可读性,使用更生动的类比和例子;
2)优化段落之间的过渡,使文章更流畅;
3)检查并改进文章的语言表达,避免重复和冗长;
4)适当添加一些新的见解或观点,使文章更有深度。请逐段进行修改,并说明每处修改的原因。
3
连续提问技巧
不要指望 AI 能一次性完成你想要的内容,在使用 AI 时要调整好心态,把它当作一个博学但经验尚浅的实习生。它知识面很广,但需要你的引导才能交出令人满意的作业。
比如上面写的咖啡店的开业方案,刚产出的第一版肯定是不符合我们的需求,需要通过继续提问的方式让它优化内容,直到符合我们的要求。
以上面咖啡店开业方案为例,DeepSeek 写的第一版方案没有很好地突出“大学生”这个目标客群。这时候,别急着否定,而是可以这样继续对话:
方案的整体框架不错,但我觉得还可以更贴近大学生群体。能否从以下几个方面优化:
- 如何根据大学生的学习、社交需求设计店内空间?
- 考虑到学生的消费能力,怎么设计更有吸引力的价格策略?
- 能否结合期末季、社团活动等校园节点设计营销活动?
就像是在指导实习生,告诉他具体需要改进的方向。DeepSeek 会基于这些新的信息,对方案进行调整。
如果修改后的方案还不够完善,可以继续提问:
方案更有针对性了,不过我觉得在这些方面还可以再细化:
- 能否加入一些适合学生群体的会员积分制度?
- 如何利用社交媒体吸引年轻客群?
- 考虑到学生群体的作息特点,营业时间是否需要调整?
这个过程就像是在进行一场头脑风暴,每一轮对话都在帮助方案变得更加完善。关键是要:
1. 保持耐心,不期待一步到位
2. 给出明确的优化方向
3. 循序渐进,一个方面一个方面地改进
4. 及时总结和归纳,确保方向正确
4
巧用不同 AI
每个 AI 就像是一个性格迥异的助手,了解他们的特长,才能让他们在最合适的岗位上发光发热。
比如说,DeepSeek R1 就像是一个思维缜密的战略顾问。给它一个任务,它会从各个角度深入思考,不仅完成你要求的内容,还会主动发现和补充你可能忽略的细节。特别是在做方案规划时,它总能给出令人惊喜的完整思路。
但是,当涉及到文学创作时,DeepSeek 就像是一个过分热情的作家,特别喜欢堆砌华丽的修饰语,有时反而影响了文章的整体效果。这时候,性格相对克制的 Claude 就能派上用场,它的文字更加简洁优雅,更适合处理需要文学性的任务。
知道谁更适合做什么,才能让团队发挥最大效能。同样,在使用 AI 时也是一样,根据任务性质选择最合适的“助手”,往往能事半功倍。
**
**
名称 | 用途 | 特点 |
---|---|---|
ChatGPT | 文案撰写,思路整理,知识答疑,情感陪伴 | 文字略显生硬,几乎没有短板,但长板也不突出 |
Claude | 长文撰写,代码生成,思路整理 | 生成中文内容最优质的 AI,几乎没有 AI 味 |
DeepSeek | 长文撰写,代码生成,数学运算,思路整理 | 非常适合思路整理和方案,中文语言优美,擅长诗词,但 AI 幻觉略大 |
豆包 AI | 多模态分析,日常辅助办公,情感陪伴 | 集成功能齐全,适合日常工作使用,作为情感陪伴也非常不错 |
Recraft | 图片生成 | 专业的AI图片生成工具,出图质量高 |
Midjourney | 图片生成 | 画质质量高,可玩性强 |
Whisk | 图片生成 | 谷歌出品的图片工具,可以根据人物和场景生成不同图片,图片质感好 |
可灵 AI | 图片、视频生成 | 目前最先进的视频生成工具之一,视频生成质量高 |
海螺 AI | 语音、视频生成 | 生成语音质量高,速度快,还免费 |
如何让DeepSeek思考得更深?深度思考万能提示词
很多人用DeepSeek,就是丢个问题,等着AI端上答案。但AI不是搜索引擎,真正的价值在于推理,而不仅仅是列清单!想让DeepSeek思考更深入?这句万能提示词送给你:
“请在你的思考分析过程中进行批判性思考、同时反面考虑你的回答,并且要对回答进行多次深入复盘,务必详尽。”
来个对比——
❌ 普通提问:“如何提高工作效率?”
提高工作效率需要结合科学的方法、合理的工具以及良好的习惯。以下是一些经过验证的实用建议,帮助你优化工作流程,减少时间浪费:
一、时间管理策略
-
明确优先级
-
- 使用 艾森豪威尔矩阵(四象限法则):将任务分为 紧急重要、重要不紧急、紧急不重要、不紧急不重要,优先处理重要任务。
- 每天列出 3项核心任务(MIT, Most Important Tasks),确保关键目标不被琐事淹没。
-
番茄工作法
-
- 专注25分钟工作+5分钟休息,每4个周期后延长休息时间(15-30分钟),避免大脑疲劳。
- 搭配工具:Forest(通过种树限制手机使用)、Toggl Track(记录时间分配)。
-
批量处理任务
-
- 将相似任务集中处理(如集中回复邮件、开会),减少“任务切换”带来的效率损耗。
** **
二、工具与流程优化
-
任务管理工具
-
- 使用 Todoist、Notion 或 Trello 管理待办事项,设置截止日期和提醒。
- 建立 标准化模板(如会议记录、报告模板),减少重复劳动。
-
自动化工具
-
- 用 Zapier 或 IFTTT 自动化重复流程(如邮件分类、数据同步)。
- 利用 ChatGPT 处理基础文案、邮件草拟,节省脑力。
-
信息整合
-
- 用 印象笔记 或 Obsidian 建立知识库,避免反复查找资料。
- 学会使用 搜索引擎高级语法(如 site:、filetype:),快速定位信息。
** **
三、高效工作习惯
-
设定清晰目标
-
- 遵循 SMART原则(具体、可衡量、可实现、相关性、时限性),避免模糊规划。
-
减少干扰源
-
- 关闭非必要的消息通知,使用 Focus Mode(专注模式)或物理隔离(如单独办公区)。
- 提前告知同事/家人你的“深度工作时间段”,减少被打断的可能。
-
学会说“不”
-
- 拒绝低价值请求(如临时会议、无关任务),保护核心工作时间。
** **
四、健康与精力管理
-
科学作息
-
- 保持 7-8小时睡眠,利用 R90睡眠法(以90分钟为周期安排睡眠)。
- 午后安排20分钟小睡,恢复精力。
-
体能提升
-
- 每天30分钟有氧运动(如快走、跳绳),促进大脑供氧。
- 工作时每1小时起身活动,避免久坐伤害。
-
饮食优化
-
- 选择低GI食物(如燕麦、坚果)保持血糖稳定,避免午后困倦。
- 少量多次补水,脱水会导致专注力下降。
** **
五、思维与心态调整
-
应对拖延症
-
- 2分钟法则:如果任务能在2分钟内完成,立刻执行。
- 5分钟启动法:说服自己“只做5分钟”,通常开始后就能进入状态。
-
定期复盘
-
- 每周回顾任务完成情况,分析时间浪费点(如社交软件、低效会议)。
- 使用 PDCA循环(计划-执行-检查-改进)优化流程。
-
接受不完美
-
- 遵循“完成优于完美”原则,避免过度纠结细节导致拖延。
** **
六、环境优化
-
物理环境
-
- 使用双显示器或多桌面提升多任务效率。
- 整理办公桌,减少视觉干扰(参考“5S管理法”)。
-
数字环境
-
- 定期清理电脑桌面和文件夹,按项目或日期分类存档。
- 使用 Chrome插件(如 OneTab)管理浏览器标签,减少内存占用。
** **
案例参考
-
程序员:用 Pomodoro Timer + Jira 管理开发任务,代码模块化复用。
-
内容创作者:用 Notion 建立选题库,通过 Grammarly 快速校对文案。
-
管理者:将会议控制在15分钟内,要求提前提交议程,会后3小时内发出纪要。
关键点总结:效率提升是系统性工程,需结合目标管理、工具优化和身体状态。建议从1-2个方法开始实践,逐步形成个人工作节奏,避免一次性改变过多导致放弃。
✅ 深度提问:“请告诉我提高工作效率的方法,并批判性思考这些方法的局限性,同时从反面探讨低效率的可能性,并对回答进行多轮复盘。”
一、提高工作效率的常见方法及局限性分析
-
时间管理法(如番茄工作法)
-
- 原理:25分钟专注+5分钟休息的循环模式
- 局限性:打断创造性思维的连续性(如程序员进入心流状态后被强制打断)
- 数据支持:MIT研究显示频繁切换任务可导致效率下降40%
-
任务优先级矩阵(艾森豪威尔矩阵)
-
- 原理:按紧急/重要程度四象限分类
- 局限性:过度简化现实场景(如紧急不重要任务可能暗含人际关系价值)
- 案例:某项目经理因过度筛选"不重要"任务导致团队关系恶化
-
数字工具依赖(自动化/协作软件)
-
- 原理:通过Trello/Notion等工具优化流程
- 局限性:工具学习曲线消耗认知资源(Adobe调研显示67%员工因工具复杂度产生焦虑)
二、效率主义的潜在危机
-
认知过载悖论
-
- 现象:过度优化导致决策疲劳(神经科学显示前额叶皮层每天仅有4小时高效期)
- 反例:某咨询公司强制使用时间追踪软件后,员工创造性方案产出量下降58%
-
人际协作异化
-
- 案例:某互联网公司通过OKR极致拆解,导致跨部门协作演变为指标博弈
- 研究:哈佛商学院追踪显示过度量化目标使团队信任度降低32%
-
创新抑制效应
-
- 神经机制:大脑默认模式网络(DMN)在"低效"状态下更活跃
- 典型表现:3M公司"15%自由时间"政策催生出Post-it等革命性产品
三、低效率的建构性价值
-
认知冗余的价值
-
- 生物学类比:大脑灰质60%为备用神经连接
- 管理实践:谷歌邮件服务Gmail诞生于20%自由探索时间
-
错误容忍的红利
-
- 数据:NASA工程团队通过允许10%容错率提升整体方案可靠性
- 认知机制:试错学习激活基底神经节长效记忆回路
-
社会黏性构建
-
- 组织行为学发现:非任务性闲聊使团队问题解决速度提升27%
- 人类学视角:传统工匠学徒制中"低效"观摩期的技能内化作用
四、多轮复盘与系统优化
-
第一轮复盘
-
- 发现盲点:忽视个体神经多样性(ADHD群体对传统时间管理法适应率仅22%)
- 补充方案:引入神经多样性工作适配原则
-
第二轮复盘
-
- 文化维度缺失:东亚集体主义文化下效率指标的异化
- 增补案例:日本职场"残业文化"与德国"工时压缩"对比研究
-
终局检验
-
- 建立动态平衡模型:引入熵值管理概念
- 提出METRIC系统:
- Modular(模块化)
- Ecological(生态化)
- Tolerance(容错性)
- Rhythm(节律性)
- Integration(整合性)
- Cybernetic(控制论)
五、实践框架建议
-
效率诊断矩阵|任务类型|效率策略|反效率策略|机械重复|自动化流程|注入随机变量| |创意生成|可控干扰源|暗时间培育| |人际协作|结构化议程|非正式社交场|
-
个人效能调节器
-
- 开发认知能量监测APP(结合HRV心率变异性指标)
- 建立非线性工作计划表(预留30%缓冲带)
-
组织管理新范式
-
- 实施"战略低效"制度(如周五下午禁止安排会议)
- 创建效率沙盒实验室(允许10%员工进行反效率实验)
这种立体化框架突破传统效率讨论的二维局限,将生物节律、组织生态、文化变量纳入考量,为知识经济时代的效能管理提供新的认知图式。最终形成具备自适应性、容错性和进化力的新型效率观。
结果差距立竿见影,普通提问可能只给你几个“番茄钟”之类的技巧,而深度提问能让AI思考效率背后的底层逻辑,甚至会给出实践建议。别把DeepSeek当工具用,把它当你的“智囊团”!