460. LFU 缓存

该博客详细介绍了LFU(Least Frequently Used)缓存算法的实现,包括数据结构设计和操作时间复杂度。通过使用双链表和字典来存储缓存项,确保了在平均O(1)的时间复杂度内完成get和put操作。在缓存满时,根据使用频率和最近使用时间进行淘汰,实现了高效的缓存管理策略。
摘要由CSDN通过智能技术生成

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

  • LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  • int get(int key) - 如果键 key 存在于缓存中,则获取键的值,否则返回 -1
  • void put(int key, int value) - 如果键 key 已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量 capacity 时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 getput 操作,使用计数器的值将会递增。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

示例:

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1);   // cache=[1,_], cnt(1)=1
lfu.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1);      // 返回 1
                 // cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
                 // cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
                 // cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1);      // 返回 -1(未找到)
lfu.get(3);      // 返回 3
                 // cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4);      // 返回 4
                 // cache=[3,4], cnt(4)=2, cnt(3)=3

题解:

from collections import defaultdict

class Node(object):
    def __init__(self, key = -1, value = -1): 
        self.prev = None
        self.next = None
        self._freq = 1
        self._key = key
        self._value = value

    @property
    def key(self):
        return self._key

    @property
    def value(self):
        return self._value

    @value.setter
    def value(self, value):
        self._value = value

    @property
    def freq(self):
        return self._freq

    @freq.setter
    def freq(self, freq):
        self._freq = freq

class DLinkNodeList(object):
    def __init__(self):
        self.head = Node()
        self.tail = Node()
        self._size = 0
        self.head.next = self.tail
        self.tail.prev = self.head

    def AddToHead(self, node):
        node.prev = self.head
        node.next = self.head.next
        self.head.next = node
        node.next.prev = node
        self._size += 1

    def RemoveNode(self, node):
        node.prev.next = node.next
        node.next.prev = node.prev
        self._size -= 1
    
    def RemoveTail(self):
        node = self.tail.prev
        self.RemoveNode(node)
        return node 

    @property
    def size(self):
        return self._size
       

class LFUCache:

    def __init__(self, capacity: int):
        self.min_freq = 1
        self.cache = {}
        self.freq_dict = defaultdict(DLinkNodeList)
        self.capacity = capacity
        self.size = 0
        

    def get(self, key: int) -> int:
        if key in self.cache:
            node = self.cache[key]
            self.freq_dict[node.freq].RemoveNode(node)
            if node.freq == self.min_freq and self.freq_dict[node.freq].size == 0:
                self.min_freq += 1
            node.freq += 1
            self.freq_dict[node.freq].AddToHead(node)
            return node.value
        return -1

    def put(self, key: int, value: int) -> None:
        if self.capacity == 0:
            return
        
        if key in self.cache:
            node = self.cache[key]
            node.value = value
            self.freq_dict[node.freq].RemoveNode(node)
            if node.freq == self.min_freq and self.freq_dict[node.freq].size == 0:
                self.min_freq += 1
            node.freq += 1
            self.freq_dict[node.freq].AddToHead(node)
        else:
            self.size += 1
            if self.size > self.capacity:
                node = self.freq_dict[self.min_freq].RemoveTail()
                self.cache.pop(node.key)
                self.size -= 1
            node = Node(key, value)
            self.cache[node.key] = node
            self.freq_dict[1].AddToHead(node)
            self.min_freq = 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值