深度学习之CNN深度卷积神经网络-VGG(进阶)

在这里插入图片描述

前言

本文主要CNN系列论文解读——VGG的简介、模型结构、参数计算、网络结构的代码实现等。

1.简介

VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和谷歌 DeepMind 一起研究出来的深度卷积神经网络,因而冠名为 VGG。VGG是一种被广泛使用的卷积神经网络结构,其在在2014年的 ImageNet 大规模视觉识别挑战(ILSVRC -2014)中获得了亚军,不是VGG不够强,而是对手太强,因为当年获得冠军的是GoogLeNet。

通常人们说的VGG是指VGG-16(13层卷积层+ 3层全连接层)。虽然其屈居亚军,但是由于其规律的设计、简洁可堆叠的卷积块,且在其他数据集上都有着很好的表现,从而被人们广泛使用,从这点上还是超过了GoogLenet。VGG和之前的AlexNet相比,深度更深,参数更多(1.38亿),效果和可移植性更好。

2.Abstract

Abstract
In this work we investigate the effect of the convolutional network depth on itsa

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值