NEO4J-链路预测算法01-Adamic Adac算法(adamicAdar)应用场景简介

说明:使用neo4j算法库时需引入跟neo4j数据库对应的算法库插件或自定义算法库

 

1.简介

Adamic Adac算法公式如下:A(x,y) = \sum_{u\epsilon N(x)\cap N(y) }^{}\frac{1}{log|N(u)|}

其中N(u)是与相邻的节点集u。

值A(x,y)=0表示两个节点不接近,而较高的值表示节点较近

该库包含一个计算两个节点之间接近都的函数

2.语法示例及使用场景

语法:

RETURN gds.alpha.linkprediction.adamicAdar(node1:Node, node2:Node, {
    relationshipQuery:String,
    direction:String
})
参数 类型 默认 可选 说明
node1 节点 n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值