关于cross-domain recommendation的论文阅读笔记

这篇博客介绍了三种跨域推荐系统的论文,分别侧重于仅使用评分矩阵、结合物品内容和评分矩阵,以及深度领域适应。《DARec》利用AutoEncoder获取用户和物品表示,同时预测源域和目标域评分。《CCCFNet》通过内容增强的协同过滤神经网络,融合物品属性特征。《Cross-domain Recommendation》探讨了在缺乏用户个人资料时,如何利用消费模式进行用户表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读笔记,持续更新…

1、只用到了rating matrix进行建模

《DARec: Deep DomainAdaptation for Cross-Domain Recommendation via Transferring Rating Patterns》

《DARec: Deep DomainAdaptation for Cross-Domain Recommendation via Transferring Rating Patterns》
user/item的representation从AutoEncoder中得到(AutoEncoder的缺点是,当数据量非常稀疏的时候,得到的隐向量并不好),然后source和target domain上的预测同时进行,并在预测的同时进行domain的预测。
损失函数
损失函数中可以看到,就是同时对两个domain上的得分的预测。R表示rating pattern extractor、rating predictor、domain classifier这三个网路上的参数的正则化。
【使用条件:source和target上的user是完全重叠的】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值