Saver类

class tf.train.Saver()
init(
var_list=None, # var_list指定将保存和恢复的变量。它可以作为一个dict或一个列表传递。如果你不给tf.train.Saver()传入任何 参数,那么saver将处理graph中的所有变量。其中每一个变量都以变量创建时传入的名称被保存。有时候在检查点文件中明确定义变量的名称很有用。举个例子,你也许已经训练得到了一个模型,其中有个变量命名为"weights",你想把它的值恢复到一个新的变量"params"中。有时候仅保存和恢复模型的一部分变量很有用。再举个例子,你也许训练得到了一个5层神经网络,现在想训练一个6层的新模型,可以将之前5层模型的参数导入到新模型的前5层中。
你可以通过给tf.train.Saver()构造函数传入Python字典,很容易地定义需要保持的变量及对应名称:键对应使用的名称,值对应被管理的变量。如果你仅在session开始时恢复模型变量的一个子集,你需要对剩下的变量执行初始化op。详情请见tf.initialize_variables()

v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
# Add ops to save and restore only 'v2' using the name "my_v2"
saver = tf.train.Saver({"my_v2": v2})
reshape=False,
sharded=False,
max_to_keep=5, # 要保留的最近检查点的最大数量。默认为5
keep_checkpoint_every_n_hours=10000.0, # 保持检查站的频率。默认为10,000小时
name=None,
restore_sequentially=False,
saver_def=None,
builder=None,
defer_build=False,
allow_empty=False,
write_version=tf.train.SaverDef.V2,
pad_step_number=False,
save_relative_paths=False,
filename=None
)

方法:
last_checkpoints
尚未删除的检查点文件名列表。

您可以将任何返回的值传递给restore()
export_meta_graph(
filename=None,
collection_list=None,
as_text=False,
export_scope=None,
clear_devices=False,
clear_extraneous_savers=False,
strip_default_attrs=False
)

recover_last_checkpoints(checkpoint_paths)

save()
restore()

Saver模型的保存加载总结:

保存:
Saver(),括号里为空,默认保存所有变量,传入列表和字典选择性保存变量
加载:
Saver()前,要先导入计算图(tf.train.import_meta_graph('model.ckpt.meta)),或重新定义计算图。括号里为空,加载所有变量,不能重命名(即计算图中变量名和模型中变量名一致)。如果变量要重命名,可以传入字典将模型保存时的变量名和需要加载的变量联系起来(映射)。注:可用于加载滑动平均模型,使用ema.variables_to_restore方法,可直接返回映射字典,再传入Saver中。
获取所有variable(每个op中可训练的张量)的名称: tf.global_variables()
获取所有tensor(每个op的输出张量)的名称: tf.contrib.graph_editor.get_tensors(tf.get_default_graph().get_tensor_by_name)
获取所有op及其输入输出的名称: 下面代码示例

with tf.Session() as sess:
    for node in sess.graph_def.node:
        print(node)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值