估计:即根据拥有的信息来对现实世界进行某种判断。
样本均值 x——> 总体均值 μ
样本方差 s2——> 总体方差 σ2
样本标准差 s ——> 总体标准差 σ
样本比例 p ——> 总体比例 P
5.1 参数估计
1 点估计:
点估计(point estimation):就是用样本统计量来估计总体参数。
2 区间估计
区间估计(interval estimation):是通过统计推断找到包括样本统计量在内(有时是以统计量为中心)的一个区间 该 敬意被认为很可能包含总体参数。
样本均值的正态分布进行标准化:
它对应的概率称为置信水平(confidence level)
计算的u值称为置信区间(confidence interval)
5.2 均值的区间估计
5.2.1 大样本的置信区间
在统计量服从正态分布的前提下,同上述方法一
样,可类似地对总体均值进行估计,有两种情况:
1.s已知,X服从正态分布。
2.s已知,n足够的大,应用中心极限定理。
5.2.2 小样本的置信区间
总体标准差未知时
其中s为样本的标准差,用它来代替总体标准差s。注意以下两点:
1.当Xi服从正态分布且n较小时,则上面的t统计量就服从于自由度为n-1的t分布。
2.如果n足够大,便可应用中心极限定理,则统计量将是渐进正态的(多数情况如此)。
5.2.3 大样本和小样本区间比较
5.3 中位数的区间估计
R语言关于中位数的区间估计包括在 非参数检验函数 wilcox.test中
5.4 比例的区间估计
5.5 置信区间的模拟比较
很多其它的检验都遵循如下的步骤:
1 构造一个认为是“好”的统计量(横轴量),它包含未知的参数;
2 利用统计量的已知分布作出概率表述;
3 构造置信区间