
Echarts 数据可视化教程
文章平均质量分 53
ECharts是一个纯JavaScript图表库,底层依赖于轻量级的Canvas类库ZRender,基于BSD开原协议,是一款非常优秀的可视化前端框架。
官网地址:http://echarts.baidu.com/
HelloCode5110
在线接单:物联网管理系统,ERP管理系统,数据可视化等...
展开
-
ECharts - 20. echarts-wordcloud词云图
首先,看效果图:如何使用?1. 引入js库文件<script src="echarts.min.js"></script><script src="echarts-wordcloud.min.js"></script>2.准备一个DOM 容器<div class="fill-h" id="wordCloudChart"></div>3.使用echarts.init、setOption配置样式及数据..原创 2020-07-02 17:38:21 · 8587 阅读 · 0 评论 -
ECharts - 19. echarts-liquidfill 水球图
首先,看效果图:接下来讲解如何使用1. 引入js文件<script src='echarts.js'></script><script src='echarts-liquidfill.js'></script>echarts下载地址:https://echarts.apache.org/zh/download.htmlliquidfill下载地址:https://github.com/ecomfe/echarts-liquidfil原创 2020-07-02 10:58:03 · 9605 阅读 · 0 评论 -
Top 5 个功能强大免费开源的数据可视化平台
1. Echarts 项目地址:https://echarts.apache.org/zh/index.htmlEcharts是百度纯 javascript 的数据可视化库,用于软件开发或系统图表模块,图表种类多,动态可视化效果,开源免费。部分图表示例:2.pyecharts项目地址:https://pyecharts.org/Echarts是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一...原创 2020-06-03 13:48:52 · 13444 阅读 · 0 评论 -
数据可视化 - K线图
"""复刻的 Echarts 的 demo 链接https://gallery.echartsjs.com/editor.html?c=xByOFPcjBe@Author: sunhailin-Leo@Time: 2019年7月14日"""from typing import List, Sequence, Unionfrom pyecharts import options as optsfrom pyecharts.commons.utils import JsCodefro...原创 2020-05-28 11:00:28 · 1705 阅读 · 0 评论 -
数据可视化 - 饼图集
from pyecharts import options as optsfrom pyecharts.charts import Piec = ( Pie() .add_dataset( source=[ ["product", "2012", "2013", "2014", "2015", "2016", "2017"], ["Matcha Latte", 41.1, 30.4, 65.1, 53.3, 83.8...原创 2020-05-28 11:00:16 · 580 阅读 · 0 评论 -
数据可视化 - 柱状图集
from pyecharts import options as optsfrom pyecharts.charts import Barc = ( Bar() .add_dataset( source=[ ["product", "2015", "2016", "2017"], ["Matcha Latte", 43.3, 85.8, 93.7], ["Milk Tea", 83.1, 73...原创 2020-05-28 11:00:08 · 791 阅读 · 0 评论 -
数据可视化 - 柱状图 - 可视化映射数据集
from pyecharts import options as optsfrom pyecharts.charts import Barc = ( Bar() .add_dataset( source=[ ["score", "amount", "product"], [89.3, 58212, "Matcha Latte"], [57.1, 78254, "Milk Tea"], ...原创 2020-05-28 11:00:03 · 993 阅读 · 0 评论 -
数据可视化 - 漏斗图升序排列
from pyecharts import options as optsfrom pyecharts.charts import Funnelfrom pyecharts.faker import Fakerc = ( Funnel() .add( "商品", [list(z) for z in zip(Faker.choose(), Faker.values())], sort_="ascending", ...原创 2020-05-28 10:59:56 · 1895 阅读 · 0 评论 -
数据可视化 - 漏斗降序
from pyecharts import options as optsfrom pyecharts.charts import Funnelfrom pyecharts.faker import Fakerc = ( Funnel() .add("商品", [list(z) for z in zip(Faker.choose(), Faker.values())]) .set_global_opts(title_opts=opts.TitleOpts(titl...原创 2020-05-28 10:59:50 · 397 阅读 · 0 评论 -
数据可视化 - 漏斗流量转化分析图
import pyecharts.options as optsfrom pyecharts.charts import Funnel"""Gallery 使用 pyecharts 1.1.0参考地址: https://echarts.baidu.com/examples/editor.html?c=funnel目前无法实现的功能:1、暂时无法对漏斗图的长宽等范围操作进行修改"""x_data = ["展现", "点击", "访问", "咨询", "订单"]y_data ...原创 2020-05-28 10:59:41 · 2382 阅读 · 1 评论 -
数据可视化 - 仪表盘
import pyecharts.options as optsfrom pyecharts.charts import Gauge"""Gallery 使用 pyecharts 1.1.0参考地址: https://echarts.baidu.com/examples/editor.html?c=gauge目前无法实现的功能:1、暂无"""( Gauge(init_opts=opts.InitOpts(width="1600px", height="800px"))...原创 2020-05-28 10:59:37 · 3011 阅读 · 0 评论 -
数据可视化 - 仪表盘 自定义颜色样式
from pyecharts import options as optsfrom pyecharts.charts import Gaugec = ( Gauge() .add( "业务指标", [("完成率", 55.5)], axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts( color=...原创 2020-05-28 10:59:32 · 1404 阅读 · 0 评论 -
数据可视化 - 仪表盘 字体样式自定义
from pyecharts import options as optsfrom pyecharts.charts import Gaugec = ( Gauge() .add( "", [("完成率", 66.6)], title_label_opts=opts.LabelOpts( font_size=40, color="blue", font_family="Microsoft YaHei"...原创 2020-05-28 10:59:28 · 1130 阅读 · 0 评论 -
数据可视化 - 仪表盘 半径自定义比例大小
from pyecharts import options as optsfrom pyecharts.charts import Gaugec = ( Gauge() .add("", [("完成率", 66.6)], radius="50%") .set_global_opts(title_opts=opts.TitleOpts(title="Gauge-修改 Radius 为 50%")) .render("gauge_change_radius.ht...原创 2020-05-27 10:36:52 · 1672 阅读 · 0 评论 -
数据可视化 - 仪表盘 分割段数自定义
from pyecharts import options as optsfrom pyecharts.charts import Gaugec = ( Gauge() .add( "业务指标", [("完成率", 55.5)], split_number=5, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleO...原创 2020-05-27 10:36:48 · 884 阅读 · 0 评论 -
ECharts - 11.数据的视觉映射
数据的视觉映射数据可视化是数据到视觉元素的映射过程(这个过程也可称为视觉编码,视觉元素也可称为视觉通道)。ECharts 的每种图表本身就内置了这种映射过程,比如折线图把数据映射到『线』,柱状图把数据映射到『长度』。一些更复杂的图表,如graph、事件河流图、treemap也都会做出他们内置的映射。此外,ECharts 还提供了visualMap 组件来提供通用的视觉映射。visualMap组件中可以使用的视觉元素有:图形类别(symbol)、图形大小(symbolSize)颜...原创 2020-05-27 10:35:47 · 1157 阅读 · 1 评论 -
ECharts - 12.ECharts 中的事件和行为
ECharts 中的事件和行为在 ECharts 的图表中用户的操作将会触发相应的事件。开发者可以监听这些事件,然后通过回调函数做相应的处理,比如跳转到一个地址,或者弹出对话框,或者做数据下钻等等。在 ECharts 3 中绑定事件跟 2 一样都是通过on方法,但是事件名称比 2 更加简单了。ECharts 3 中,事件名称对应 DOM 事件名称,均为小写的字符串,如下是一个绑定点击操作的示例。myChart.on('click', function (params) { // 控..原创 2020-05-27 10:35:42 · 1319 阅读 · 2 评论 -
ECharts - 13.小例子:自己实现拖拽
小例子:自己实现拖拽介绍一个实现拖拽的小例子。这个例子是在原生 echarts 基础上做了些小小扩展,带有一定的交互性。通过这个例子,我们可以了解到,如何使用 echarts 提供的 API 实现定制化的富交互的功能。这个例子主要做到了这样一件事,用鼠标可以拖拽曲线的点,从而改变曲线的形状。例子很简单,但是有了这个基础我们还可以做更多的事情,比如在图中可视化得编辑。所以我们从这个简单的例子开始。echarts 本身没有提供封装好的『拖拽改变图表』功能,因为现在认为这个功能并不足够有通用性。那原创 2020-05-27 10:35:38 · 2013 阅读 · 0 评论 -
ECharts - 14.小例子:实现日历图
小例子:实现日历图在ECharts中,我们新增了日历坐标系,如何快速写出一个日历图呢?通过以下三个步骤即可实现上述效果:第一步:引入js文件下载的最新完整版本echarts.min.js即可,无需再单独引入其他文件哦<script src="echarts.min.js"></script><script> // ...</script>第二步:指定DOM元素作为图表容器和ECharts中的其他图表一样,创建一个原创 2020-05-27 10:35:34 · 1719 阅读 · 0 评论 -
ECharts - 15.旭日图
旭日图旭日图(Sunburst)由多层的环形图组成,在数据结构上,内圈是外圈的父节点。因此,它既能像饼图一样表现局部和整体的占比,又能像矩形树图一样表现层级关系。引入相关文件旭日图是 ECharts 4.0 新增的图表类型,从CDN引入完整版的echarts.min.js最简单的旭日图创建旭日图需要在series配置项中声明类型为'sunburst'的系列,并且以树形结构声明其data:var option = { series: { t...原创 2020-05-27 10:35:29 · 1740 阅读 · 0 评论 -
ECharts - 16.富文本标签
富文本标签在许多地方(如图、轴的标签等)都可以使用富文本标签。例如:其他一些例子:Map Labels,Pie Labels,Gauge.原先 echarts 中的文本标签,只能对整块统一进行样式设置,并且仅仅支持颜色和字体的设置,从而导致不易于制作表达能力更强的文字描述信息。echarts v3.7 以后,支持了富文本标签,能够:定制文本块整体的样式(如背景、边框、阴影等)、位置、旋转等。 对文本块中个别片段定义样式(如颜色、字体、高宽、背景、阴影等)、...原创 2020-05-27 10:35:23 · 2909 阅读 · 2 评论 -
ECharts - 17.使用 Canvas 或者 SVG 渲染
使用 Canvas 或者 SVG 渲染浏览器端图表库大多会选择 SVG 或者 Canvas 进行渲染。对于绘制图表来说,这两种技术往往是可替换的,效果相近。但是在一些场景中,他们的表现和能力又有一定差异。于是,对它们的选择取舍,就成为了一个一直存在的不易有标准答案的话题。ECharts 从初始一直使用 Canvas 绘制图表(除了对 IE8- 使用 VML)。而ECharts v4.0发布了 SVG 渲染器,从而提供了一种新的选择。只须在初始化一个图表实例时,设置renderer 参数为'...原创 2020-05-27 10:35:19 · 1841 阅读 · 0 评论 -
ECharts - 18.在图表中支持无障碍访问
在图表中支持无障碍访问W3C 制定了无障碍富互联网应用规范集(WAI-ARIA,the Accessible Rich Internet Applications Suite),致力于使得网页内容和网页应用能够被更多残障人士访问。ECharts 4.0 遵从这一规范,支持自动根据图表配置项智能生成描述,使得盲人可以在朗读设备的帮助下了解图表内容,让图表可以被更多人群访问。默认关闭,需要通过将aria.show设置为true开启。开启后,会根据图表、数据、标题等情况,自动智能生成关于图表的描述...原创 2020-05-27 10:35:14 · 2643 阅读 · 0 评论 -
ECharts - 10.移动端自适应
移动端自适应ECharts 工作在用户指定高宽的 DOM 节点(容器)中。ECharts 的『组件』和『系列』都在这个 DOM 节点中,每个节点都可以由用户指定位置。图表库内部并不适宜实现 DOM 文档流布局,因此采用类似绝对布局的简单容易理解的布局方式。但是有时候容器尺寸极端时,这种方式并不能自动避免组件重叠的情况,尤其在移动端小屏的情况下。另外,有时会出现一个图表需要同时在PC、移动端上展现的场景。这需要 ECharts 内部组件随着容器尺寸变化而变化的能力。为了解决这个问题,ECharts原创 2020-05-26 10:12:47 · 3006 阅读 · 2 评论 -
ECharts - 9.在图表中加入交互组件
在图表中加入交互组件除了图表外 ECharts 中,提供了很多交互组件。例如:图例组件legend、标题组件title、视觉映射组件visualMap、数据区域缩放组件dataZoom、时间线组件timeline下面以数据区域缩放组件dataZoom为例,介绍如何加入这种组件。数据区域缩放组件(dataZoom)介绍『概览数据整体,按需关注数据细节』是数据可视化的基本交互需求。dataZoom组件能够在直角坐标系(grid)、极坐标系(polar)中实现这一功能。...原创 2020-05-26 10:12:42 · 498 阅读 · 0 评论 -
ECharts - 8.使用 dataset 管理数据
使用 dataset 管理数据ECharts 4 开始支持了dataset组件用于单独的数据集声明,从而数据可以单独管理,被多个组件复用,并且可以基于数据指定数据到视觉的映射。这在不少场景下能带来使用上的方便。ECharts 4 以前,数据只能声明在各个“系列(series)”中,例如:option: { xAxis: { type: 'category', data: ['Matcha Latte', 'Milk Tea', 'Cheese Coc..原创 2020-05-26 10:12:37 · 2884 阅读 · 0 评论 -
ECharts - 7.异步数据加载和更新
异步数据加载和更新异步加载入门示例中的数据是在初始化后setOption中直接填入的,但是很多时候可能数据需要异步加载后再填入。ECharts中实现异步数据的更新非常简单,在图表初始化后不管任何时候只要通过 jQuery 等工具异步获取数据后通过setOption填入数据和配置项就行。var myChart = echarts.init(document.getElementById('main'));$.get('data.json').done(function (data) {...原创 2020-05-26 10:12:33 · 862 阅读 · 0 评论 -
ECharts - 6. ECharts 中的样式简介
ECharts 中的样式简介本文主要是大略概述,用哪些方法,可以设置设置样式,改变图形元素或者文字的颜色、明暗、大小等。之所以用“样式”这种可能不很符合数据可视化思维的词,是因为,比较通俗易懂。本文介绍这几种方式,他们的功能范畴可能会有交叉(即同一种细节的效果可能可以用不同的方式实现),但是他们各有各的场景偏好。颜色主题(Theme) 调色盘 直接样式设置(itemStyle、lineStyle、areaStyle、label、...) 视觉映射(visualMap)其他关于样式原创 2020-05-26 10:12:27 · 697 阅读 · 0 评论 -
ECharts - 5. 个性化图表的样式
个性化图表的样式ECharts 提供了丰富的自定义配置选项,并且能够从全局、系列、数据三个层级去设置数据图形的样式。下面我们来看如何使用 ECharts 实现下面这个南丁格尔图:绘制南丁格尔图5分钟上手ECharts中讲了如何绘制一个简单的柱状图,这次要画的是饼图,饼图主要是通过扇形的弧度表现不同类目的数据在总和中的占比,它的数据格式比柱状图更简单,只有一维的数值,不需要给类目。因为不在直角坐标系上,所以也不需要xAxis,yAxis。myChart.setOption({ .原创 2020-05-26 10:12:22 · 1112 阅读 · 0 评论 -
ECharts - 4. ECharts 基础概念概览
ECharts 基础概念概览本文介绍 echarts 最基本的名词和概念。echarts 实例一个网页中可以创建多个echarts 实例。每个echarts 实例中可以创建多个图表和坐标系等等(用option来描述)。准备一个 DOM 节点(作为 echarts 的渲染容器),就可以在上面创建一个 echarts 实例。每个 echarts 实例独占一个 DOM 节点。系列(series)系列(series)是很常见的名词。在 echarts 里,系列(series)...原创 2020-05-26 10:12:17 · 1200 阅读 · 0 评论 -
ECharts - 3. 在 webpack 中使用 ECharts
在 webpack 中使用 EChartsWebpack是目前比较流行的模块打包工具,你可以在使用 webpack 的项目中轻松的引入和打包 ECharts,这里假设你已经对 webpack 具有一定的了解并且在自己的项目中使用。npm 安装 ECharts你可以使用如下命令通过 npm 安装 EChartsnpm install echarts --save引入 ECharts通过 npm 上安装的 ECharts 和 zrender 会放在node_modules目录下。可.原创 2020-05-26 10:12:12 · 554 阅读 · 0 评论 -
ECharts - 2. 自定义构建 ECharts
自定义构建 ECharts一般来说,可以直接从CDN中获取构建后的 echarts,也可以从GitHub中的echarts/dist文件夹中获取构建好的 echarts,这都可以直接在浏览器端项目中使用。这些构建好的 echarts 提供了下面这几种定制:完全版:echarts/dist/echarts.js,体积最大,包含所有的图表和组件,所包含内容参见:echarts/echarts.all.js。 常用版:echarts/dist/echarts.common.js,体积适中,包...原创 2020-05-26 10:12:07 · 1063 阅读 · 0 评论 -
ECharts - 1. 5 分钟上手 ECharts
5 分钟上手 ECharts获取 ECharts你可以通过以下几种方式获取 ECharts。 从Apache ECharts (incubating) 官网下载界面获取官方源码包后构建。 在 ECharts 的GitHub获取。 通过 npm 获取 echarts,npm install echarts --save,详见“在 webpack 中使用 echarts” 通过jsDelivr等 CDN 引入 引入 ECharts通过标签方式直接引...原创 2020-05-26 10:12:00 · 555 阅读 · 0 评论 -
数据可视化 - 雷达图 - 空气质量范例
from pyecharts import options as optsfrom pyecharts.charts import Radarvalue_bj = [ [55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2], [56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4], [42, 24, 44, 0.76, 40, 16, 5],...原创 2020-05-25 10:29:59 · 1189 阅读 · 0 评论 -
数据可视化 - 组合组件 - 折线图加散点图左右排列
from pyecharts import options as optsfrom pyecharts.charts import Grid, Line, Scatterfrom pyecharts.faker import Fakerscatter = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.value...原创 2020-05-25 10:29:25 · 686 阅读 · 0 评论 -
数据可视化 - 多图组合 - 拖拽式布局
from pyecharts import options as optsfrom pyecharts.charts import Bar, Grid, Line, Pagebar = ( Bar() .add_xaxis(["{}月".format(i) for i in range(1, 13)]) .add_yaxis( "蒸发量", [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162....原创 2020-05-25 10:29:21 · 1259 阅读 · 1 评论 -
数据可视化 - 地图 - 人口密度
import sslimport pyecharts.options as optsfrom pyecharts.charts import Mapfrom pyecharts.datasets import register_url"""Gallery 使用 pyecharts 1.1.0 和 echarts-china-cities-js参考地址: https://echarts.baidu.com/examples/editor.html?c=map-HK"""ssl....原创 2020-05-25 10:29:10 · 4368 阅读 · 0 评论 -
数据可视化 - 雷达图
import pyecharts.options as optsfrom pyecharts.charts import Radar"""Gallery 使用 pyecharts 1.1.0参考地址: https://echarts.baidu.com/examples/editor.html?c=radar目前无法实现的功能:1、雷达图周围的图例的 textStyle 暂时无法设置背景颜色"""v1 = [[4300, 10000, 28000, 35000, 50000, 1...原创 2020-05-25 10:29:00 · 1601 阅读 · 0 评论 -
数据可视化 - 散点图
from pyecharts import options as optsfrom pyecharts.charts import Scatterfrom pyecharts.faker import Fakerc = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) .set_global_...原创 2020-05-25 10:28:56 · 661 阅读 · 0 评论 -
数据可视化 - 3D散点图
import asynciofrom aiohttp import TCPConnector, ClientSessionimport pyecharts.options as optsfrom pyecharts.charts import Scatter3D"""Gallery 使用 pyecharts 1.1.0参考地址: https://echarts.baidu.com/examples/editor.html?c=scatter3d&gl=1&theme=d...原创 2020-05-25 10:28:51 · 1369 阅读 · 0 评论