log4J2学习记录

    1.依赖的jar包:
    log4j-core-xx.jar
    log4j-api-xx.jar

  

  2.编码中使用:   
        a.获取Logger对象(对应后面配置中的<Logger>)
        private static Logger logger = LogManager.getLogger(MyApp.class.getName());
        b.调用Logger类中的方法,记录日志:
    public boolean hello() {
                logger.entry();   //trace级别的信息,单独列出来是希望你在某个方法或者程序逻辑开始的时候调用,和logger.trace("entry")基本一个意思
                logger.error("Did it again!");   //error级别的信息,参数就是你输出的信息
                logger.info("我是info信息");    //info级别的信息
                logger.debug("我是debug信息");
                logger.warn("我是warn信息");
                logger.fatal("我是fatal信息");
                logger.log(Level.DEBUG, "我是debug信息");   //这个就是制定Level类型的调用:谁闲着没事调用这个,也不一定哦!
                logger.exit();    //和entry()对应的结束方法,和logger.trace("exit");一个意思
                return false;
            }

  3.配置文件:
    须知:首先需要注意的是,log4j 2.0与以往的1.x有一个明显的不同,其配置文件只能采用.xml, .json或者 .jsn而非.properties文件,键值对的形式,那种配置方式很不好看,但是基本上我们从这个配置文件也能看到Log4J。在默认情况下,系统选择configuration文件的优先级如下:(classpath为scr文件夹)
    a.配置文件片段:
    <?xml version="1.0" encoding="UTF-8"?>

    <configuration status="error">
        <!--先定义所有的appender-->
        <appenders>
            <!--这个输出控制台的配置-->
            <Console name="Console" target="SYSTEM_OUT">
                <!--控制台只输出level及以上级别的信息(onMatch),其他的直接拒绝(onMismatch)-->
                <!--有一个比较有意思的是ThresholdFilter ,一个过滤器,其实每个appender可以定义很多个filter,这个功能很有用。
                如果你要选择控制台只能输出ERROR以上的类别,你就用ThresholdFilter,把level设置成ERROR,onMatch="ACCEPT" onMismatch="DENY" 的意思是匹配就接受,否则直接拒绝,当然有其他选择了,
                比如交给其他的过滤器去处理了之类的,详情大家自己去琢磨吧。 -->
                <ThresholdFilter level="trace" onMatch="ACCEPT" onMismatch="DENY"/>
                <!--这个都知道是输出日志的格式-->
                <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
            </Console>
            <!--文件会打印出所有信息,这个log每次运行程序会自动清空,由append属性决定,这个也挺有用的,适合临时测试用-->
            <File name="log" fileName="log/test.log" append="false">
            <!--PatternLayout就是输出格式了,基本上是前面时间,线程,级别,logger名称,log信息等,差不多,可以自己去查他们的语法规则。-->
                <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
            </File>

            <!--这个会打印出所有的信息,每次大小超过size,则这size大小的日志会自动存入按年份-月份建立的文件夹下面并进行压缩,作为存档-->
            <RollingFile name="RollingFile" fileName="logs/app.log"
                         filePattern="log/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">
                <PatternLayout pattern="%d{yyyy-MM-dd 'at' HH:mm:ss z} %-5level %class{36} %L %M - %msg%xEx%n"/>
                <SizeBasedTriggeringPolicy size="50MB"/>
            </RollingFile>
        </appenders>
        <!--然后定义logger,只有定义了logger并引入的appender,appender才会生效-->
        <loggers>
            <!--additivity:要不要往上层节点输出日志(例如root作为父节点,那当前日志是否往root里写)-->
            <Logger name="LogTest" level="debug" additivity="false">
                <AppenderRef ref="STDOUT" />
            </Logger>
            <!--建立一个默认的root的logger,root根节点,便于子节点继承这里的配置-->
            <root level="trace">
                <appender-ref ref="RollingFile"/>
                <appender-ref ref="Console"/>
            </root>

        </loggers>
    </configuration>

 

  1)根节点configuration,然后有两个子节点:appenders和loggers(都是复数,意思就是可以定义很多个appender和logger了)(如果想详细的看一下这个xml的结构,可以去jar包下面去找xsd文件和dtd文件)

  2)appenders:这个下面定义的是各个appender,就是输出了,有好多类别。
        a.console:控制台 b.file:输出的文件 c.rollingFile:循环”的日志文件,意思是日志文件大于阀值的时候,就开始写一个新的日志文件。    
        

  3)loggers下面会定义许多个logger,这些logger通过name进行区分,来对不同的logger配置不同的输出,方法是通过引用上面定义的logger,注意,appender-ref引用的值是上面每个appender的name,而不是节点名称。


  为什么要加一个这样的配置文件呢?其实这个配置文件我感觉挺好的,他的实用性就在下面:


  实用性:
  我们用日志一方面是为了记录程序运行的信息,在出错的时候排查之类的,有时候调试的时候也喜欢用日志。所以,日志如果记录的很乱的话,看起来也不方便。所以我可能有下面一些需求:
  1)我正在调试某个类,所以,我不想让其他的类或者包的日志输出,否则会很多内容,所以,你可以修改上面root的级别为最高(或者谨慎起见就用ERROR),然后,加一个针对该类的logger配置,
    比如第一个配置文件中的设置,把他的level设置trace或者debug之类的,然后我们给一个appender-ref是定义的File那个appender(共三个appender,还记得吗),这个appender的好处是有一个append为false的属性,
    这样,每次运行都会清空上次的日志,这样就不会因为一直在调试而增加这个文件的内容,查起来也方便,这个和输出到控制台就一个效果了。

  
  



参考:
日志的级别:

    我们现在要调用logger的方法,不过在这个Logger对象中,有很多方法,所以要先了解log4j的日志级别,log4j规定了默认的几个级别:trace<debug<info<warn<error<fatal等。这里要说明一下:

    1)级别之间是包含的关系,意思是如果你设置日志级别是trace,则大于等于这个级别的日志都会输出。

    2)基本上默认的级别没多大区别,就是一个默认的设定。你可以通过它的API自己定义级别。你也可以随意调用这些方法,不过你要在配置文件里面好好处理了,否则就起不到日志的作用了,而且也不易读,相当于一个规范,你要完全定义一套也可以,不用没多大必要。从我们实验的结果可以看出,log4j默认的优先级为ERROR或者WARN(实际上是ERROR)

    3)这不同的级别的含义大家都很容易理解,这里就简单介绍一下:

    trace: 是追踪,就是程序推进以下,你就可以写个trace输出,所以trace应该会特别多,不过没关系,我们可以设置最低日志级别不让他输出。

    debug: 调试么,我一般就只用这个作为最低级别,trace压根不用。是在没办法就用eclipse或者idea的debug功能就好了么。

    info: 输出一下你感兴趣的或者重要的信息,这个用的最多了。

    warn: 有些信息不是错误信息,但是也要给程序员的一些提示,类似于eclipse中代码的验证不是有error 和warn(不算错误但是也请注意,比如以下depressed的方法)。

    error: 错误信息。用的也比较多。

    fatal: 级别比较高了。重大错误,这种级别你可以直接停止程序了,是不应该出现的错误么!不用那么紧张,其实就是一个程度的问题。

name的机制:

       我们这里看到了配置文件里面是name很重要,没错,这个name可不能随便起(其实可以随便起)。
    这个机制意思很简单。就是类似于java package一样,比如我们的一个包:cn.lsw.base.log4j2。而且,可以发现我们前面生成Logger对象的时候,命名都是通过 Hello.class.getName(); 这样的方法,
    为什么要这样呢? 很简单,因为有所谓的Logger 继承的问题。比如 如果你给cn.lsw.base定义了一个logger,那么他也适用于cn.lsw.base.lgo4j2这个logger。名称的继承是通过点(.)分隔的。
    然后你可以猜测上面loggers里面有一个子节点不是logger而是root,而且这个root没有name属性。这个root相当于根节点。你所有的logger都适用与这个logger,所以,即使你在很多类里面通过  
    类名.class.getName()  得到很多的logger,而且没有在配置文件的loggers下面做配置,他们也都能够输出,因为他们都继承了root的log配置。

      我们上面的这个配置文件里面还定义了一个logger,他的名称是 cn.lsw.base.log4j2.Hello ,这个名称其实就是通过前面的Hello.class.getName(); 得到的,我们为了给他单独做配置,
    这里就生成对于这个类的logger,上面的配置基本的意思是只有cn.lsw.base.log4j2.Hello 这个logger输出trace信息,也就是他的日志级别是trace,其他的logger则继承root的日志配置,
    日志级别是error,只能打印出ERROR及以上级别的日志。如果这里logger 的name属性改成cn.lsw.base,则这个包下面的所有logger都会继承这个log配置(这里的包是log4j的logger name的“包”的含义,
    不是java的包,你非要给Hello生成一个名称为“myhello”的logger,他也就没法继承cn.lsw.base这个配置了。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值