Python中flatten( ),matrix.A用法

flatten()函数用法

flatten是numpy.ndarray.flatten的一个函数,即返回一个折叠成一维的数组。但是该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的。
其官方文档是这样描述的

Parameters:

ndarray.flatten(order='C')
Return a copy of the array collapsed into one dimension.
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the elements occur in memory. The default is ‘C’.

a是个矩阵或者数组,a.flatten()就是把a降到一维,默认是按横的方向降
那么a.flatten().A又是什么呢? 其实这是因为此时的a是个矩阵,降维后还是个矩阵,矩阵.A(等效于矩阵.getA())变成了数组。具体看下面的例子:

1、用于array对象

>>> from numpy import *
>>> a=array([[1,2],[3,4],[5,6]])
>>> a
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> a.flatten()
array([1, 2, 3, 4, 5, 6])
>>> a.flatten('F')
array([1, 3, 5, 2, 4, 6])  # 按列排序
>>> a.flatten('A')
array([1, 2, 3, 4, 5, 6])
>>> 

2、用于mat对象

>>> a=mat([[1,2,3],[4,5,6]])
>>> a
matrix([[1, 2, 3],
        [4, 5, 6]])
>>> a.flatten()
matrix([[1, 2, 3, 4, 5, 6]])
>>> a=mat([[1,2,3],[4,5,6]])
>>> a
matrix([[1, 2, 3],
        [4, 5, 6]])
>>> a.flatten()
matrix([[1, 2, 3, 4, 5, 6]])
>>> y=a.flatten().A 
>>> shape(y)
(1L, 6L)
>>> shape(y[0]) 
(6L,)
>>> a.flatten().A[0] 
array([1, 2, 3, 4, 5, 6])
>>>  

从中可以看出matrix.A的用法和矩阵发生的变化。

3、但是该方法不能用于list对象,想要list达到同样的效果可以使用列表表达式:

>>> a=array([[1,2],[3,4],[5,6]])
>>> [y for x in a for y in x]
[1, 2, 3, 4, 5, 6]
>>> 

完美实现!!

参考:http://www.cnblogs.com/harvey888/p/5590357.html

Python中,.flatten()是一个函数,用于将多维数组压平成一维数组。它在torch和numpy中都有不同的用法。 在torch中,.flatten()函数可以用于将tensor压平成一维。例如,如果有一个shape为(2, 2, 3, 3)的tensor x,那么通过x.flatten()可以得到一个shape为(36,)的一维tensor b。此外,还可以通过指定参数来改变压平的方式,例如x.flatten(0)可以将tensor按照第一个维度压平,得到shape为(4, 3, 3)的tensor c,x.flatten(1)可以将tensor按照第二个维度压平,得到shape为(2, 6, 3)的tensor d。,x.flatten('F')会得到。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [torch.flatten、np.flatten 详解](https://blog.csdn.net/qq_28949847/article/details/128568723)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Pythonflatten( ),matrix.A用法说明](https://download.csdn.net/download/weixin_38499336/12850013)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值