最优化
玉心sober
机器学习自然语言处理的热爱者
展开
-
随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。原创 2013-05-25 21:21:45 · 198732 阅读 · 47 评论 -
BSP编程模型(以NMF为例,试验基于消息传递的模型BSP过程)
对于需要迭代计算的算法,MapReduce显然不可用,迭代n次的IO量太大,而基于消息的传递模型,BSP和MPI的优势就出来了。BSP的编程模型,试验过了,确实容易入门,只要将求解问题(例如,优化问题、图的最短路径问题等等)抽象成图模型(顶点Vertex、边Edge)后,再通过消息Message,来不断迭代求解即可。拿前面有篇文章,NMF的矩阵分解这个优化问题,来实验:1)NMF的矩阵分解基本原创 2013-07-01 15:33:35 · 4807 阅读 · 4 评论