棋盘移动最短路径问题(Dijkstra算法)

文章介绍了如何用Dijkstra算法解决在矩阵棋盘上从起点到终点寻找最小代价路径的问题。通过将棋盘视为有向图,并分析算法过程,给出源代码实现,展示了对经典算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem

给定一个矩阵A[m][n] ,矩阵上各点的值为移动到该点的代价,每次可以从该点的对角线或直线方向移动一格,求从点A[0][0]移动到点A[m-1][n-1]的最小代价。
比如矩阵,求从左上角的1移动到右下角的1的最小代价。
1 3 0 0 1 2
1 2 0 0 2 3
1 1 1 0 0 1
1 1 1 2 1 1
3 0 0 1 0 1

solution

本题可以看成是带权重的有向图上单源最短路径问题,将棋盘上的点看成是一组节点集合。每一个点至多与其他八个点直接相连,,即点 u 发出的边至多为8,A[m][n]表示移动到该点的权重。因此可以用Dijkstra算法求解。

Dijkstra算法维持的一组关键信息是一组节点集合S,该集合中的每个点到源节点 s 的最短路径已经被找到。算法重复的从节点结合 V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值