图像二值化常用的方法

常用方法

方法解释优缺点
双峰法物体和背景区别较大,可以分别形成波峰,这是选择双峰之间的波谷最为阈值只能用于目标和背景的直方图没有重叠时
P参数法知道目标占图像的比例,且目标偏暗,背景偏亮
m i n ( ∣ ∑ t = 0 T p ( t ) m ∗ n − P ∣ ) min(\vert\frac{\sum_{t=0}^Tp(t)}{m*n} -P\vert) minmnt=0Tp(t)P
T:阈值
p(t):直方图
P:目标占图像的比例
用于固定分辨率下,目标所占整个图像比例已知的情况
最大类间方差法(Otsu)基于整幅图的统计特性实现阈值自动选取的,基本思想是,用某一假定的灰度值t将图像的灰度分成两组,当两组的类间方差最大时,此灰度值就是图像二值化的最佳阈值。
将 数 据 分 成 两 组 则 : 两 组 图 像 个 数 在 图 像 中 所 占 比 分 比 : w 0 = ∑ i = 0 T p i w 1 = ∑ i = T + 1 L − 1 p i = 1 − w 0 平 均 灰 度 值 : u 0 = ∑ i = 0 T i p i u 1 = ∑ i = T + 1 L − 1 i p i 图 像 总 的 平 均 灰 度 值 : u = w 0 u 0 + w 1 u 1 类 间 方 差 : g ( t ) = w 0 ( u 0 − u ) 2 + w 1 ( u 1 − u ) 2 = w 0 w 1 ( u 0 − u 1 ) 最 佳 阈 值 : T = a r g m a x ( g ( t ) ) \begin{aligned}将数据分成两组则:\\ 两组图像个数在图像中所占比分比:& w_0 = \sum_{i=0}^Tp_i& w_1 = \sum_{i=T+1}^{L-1}p_i = 1- w_0 \\ 平均灰度值:& u_0 = \sum_{i=0}^{T}ip_i & u_1 = \sum{i=T+1}^{L-1}ip_i \\ 图像总的平均灰度值:& u = w_0u_0 + w_1u_1 \\ 类间方差:& g(t) = w_0(u_0 -u)^2 + w_1(u_1 -u)^2 = w_0w_1(u_0 -u_1) \\ 最佳阈值:& T= argmax(g(t))\end{aligned} ::w0=i=0Tpiu0=i=0Tipiu=w0u0+w1u1g(t)=w0(u0u)2+w1(u1u)2=w0w1(u0u1)T=argmax(g(t))w1=i=T+1L1pi=1w0u1=i=T+1L1ipi
当物体目标和背景灰度差不明显时,会出现无法忍受的大块黑色区域,甚至丢失整幅图像的信息
最大熵阈值法 直 方 图 的 熵 的 定 义 : H = ∑ i = 0 L − 1 i p i 目 标 ( O ) 类 : p i P t , i = 0 , 1 , . . . , t , 其 中 P t = ∑ i = 0 t p i 背 景 ( B ) 类 : p i 1 − p t , i = t + 1 , . . . , L − 1 目 标 类 的 熵 : H O ( t ) = ∑ i = 0 t p i P t ln ⁡ p i P t = ln ⁡ P t + H t P t , 其 中 H t = − ∑ i = 0 t p i ln ⁡ p i 背 景 类 的 熵 : H B ( t ) = ∑ i = t + 1 L − 1 p i 1 − P t ln ⁡ p i 1 − P t = ln ⁡ 1 − P t + H − H t 1 − P t , 其 中 H = − ∑ i = 0 L − 1 p i ln ⁡ p i 图 像 的 总 熵 : H ( t ) = H O ( t ) + H B ( t ) = ln ⁡ P t ∗ ( 1 − P t ) + H t P t + H − H t 1 − P t 求 最 佳 阈 值 : T = a r g m a x ( H ( t ) ) \begin{aligned} 直方图的熵的定义:& H = \sum_{i=0}^{L-1}ip_i\\ 目标(O)类:& \frac{p_i}{P_t},i=0,1,...,t,其中P_t = \sum_{i=0}^t p_i \\ 背景(B)类:& \frac{p_i}{1-p_t},i=t+1,...,L-1\\目标类的熵:& H_O(t) = \sum_{i=0}^t{\frac{p_i}{P_t}\ln{\frac{p_i}{P_t}}} = \ln{P_t} + \frac{H_t}{P_t},其中H_t = - \sum_{i=0}{t}p_i\ln{p_i} \\ 背景类的熵:&H_B(t) = \sum_{i=t+1}^{L-1}{\frac{p_i}{1-P_t}\ln{\frac{p_i}{1-P_t}}} = \ln{1-P_t} + \frac{H-H_t}{1-P_t},其中H = - \sum_{i=0}{L-1}p_i\ln{p_i} \\图像的总熵:& H(t) = H_O(t) + H_B(t) = \ln{P_t *(1-P_t)} + \frac{H_t}{P_t} + \frac{H-H_t}{1-P_t}\\求最佳阈值:& T= argmax(H(t))\end{aligned} :(O)(B):::H=i=0L1ipiPtpi,i=0,1,...,tPt=i=0tpi1ptpi,i=t+1,...,L1HO(t)=i=0tPtpilnPtpi=lnPt+PtHt,Ht=i=0tpilnpiHB(t)=i=t+1L11Ptpiln1Ptpi=ln1Pt+1PtHHt,H=i=0L1pilnpiH(t)=HO(t)+HB(t)=lnPt(1Pt)+PtHt+1PtHHtT=argmax(H(t))对于非理想双峰直方图也可以进行很好的分割,缺点是运算速度慢不适合实时,仅仅考虑像素点的灰度信息,没有考虑像素点的空间信息,所以当图像的信噪比较低时,分割效果不理想。
迭代法 1 选 取 初 始 阈 值 T ( j ) , 通 常 可 以 选 择 整 幅 图 的 平 均 灰 度 值 作 为 初 始 阈 值 , j 为 迭 代 次 数 , 初 始 时 , j = 0 2 用 T ( j ) 分 割 图 像 , 将 图 像 分 为 2 个 区 域 C 1 ( j ) 和 C 2 ( i ) 3. 计 算 平 均 灰 度 值 : u 1 = 1 N 1 ( j ) ∑ f ( x , y ) ∈ C 1 j f ( x , y ) u 2 = 1 N 2 ( j ) ∑ f ( x , y ) ∈ C 2 j f ( x , y ) 其 中 : N 1 ( j ) , N 2 j 属 于 第 j 次 迭 代 时 区 域 C 1 和 C 2 的 像 素 点 数 , f ( x , y ) 表 示 图 中 ( x , y ) 点 的 灰 度 值 4. 计 算 新 的 阈 值 T ( j + 1 ) = u 1 ( j ) + u 2 ( j ) 2 5. 令 j = j + 1 , 重 复 2 − 4 , 直 到 T ( j + 1 ) 和 T ( j ) 的 差 小 于 规 定 值 或 j 达 到 最 大 迭 代 次 数 \begin{aligned} 1& 选取初始阈值T(j),通常可以选择整幅图的平均灰度值作为初始阈值,j为迭代次数,初始时,j=0\\ 2& 用T(j)分割图像,将图像分为2个区域C_1^{(j)和C_2^{(i)}}\\ 3.&计算平均灰度值:u_1 = \frac{1}{N1_(j)}\sum_{f(x,y)\in{C_1^{j}}}{f(x,y)} \qquad u_2 = \frac{1}{N2_(j)}\sum_{f(x,y)\in{C_2^{j}}}{f(x,y)}\\ &其中:N_1^{(j)},N_2^{j}属于第j次迭代时区域C1和C2的像素点数,f(x,y)表示图中(x,y)点的灰度值\\ 4.&计算新的阈值T(j+1)= \frac{u_1^{(j)} + u_2^{(j)}}{2}\\ 5.&令j=j+1,重复2-4,直到T(j+1)和T(j)的差小于规定值或j达到最大迭代次数\end{aligned} 123.4.5.T(j),jj=0T(j)2C1(j)C2(i):u1=N1(j)1f(x,y)C1jf(x,y)u2=N2(j)1f(x,y)C2jf(x,y)N1(j),N2jjC1C2f(x,y)(x,y)T(j+1)=2u1(j)+u2(j)j=j+1,24T(j+1)T(j)j

参考链接:https://wenku.baidu.com/view/acc24dcf680203d8ce2f2469.html

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页