OCR技术1

orc的应用现状

应用场景现状
印刷体识别由于字体规范,因此较为简单;
在印刷过程字体可能断裂或者粘连,使识别困难
手写体由于每个人的写字风格不一样,因此是一项尚未攻破的难关
自然文本识别环境复杂,也是一个尚未攻破的难关

传统OCR识别流程

版面分析
预处理
图像分割
字符识别
后处理识别矫正

OCR识别方法

方法优缺点
Tesseract对汉子识别精度不高
对英文和数字不错
大平台OCR少量不收费,大量收费,无法进行优化
传统的模型特征的设计较为费时,抗干扰性差
暴力的字符模板匹配使用简单的场景识别
深度学习需要大量训练数据,所需硬件资源较多

参考链接:https://www.cnblogs.com/skyfsm/p/7923015.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值