orc的应用现状
应用场景 | 现状 |
---|
印刷体识别 | 由于字体规范,因此较为简单; 在印刷过程字体可能断裂或者粘连,使识别困难 |
手写体 | 由于每个人的写字风格不一样,因此是一项尚未攻破的难关 |
自然文本识别 | 环境复杂,也是一个尚未攻破的难关 |
传统OCR识别流程
OCR识别方法
方法 | 优缺点 |
---|
Tesseract | 对汉子识别精度不高 对英文和数字不错 |
大平台OCR | 少量不收费,大量收费,无法进行优化 |
传统的模型 | 特征的设计较为费时,抗干扰性差 |
暴力的字符模板匹配 | 使用简单的场景识别 |
深度学习 | 需要大量训练数据,所需硬件资源较多 |
参考链接:https://www.cnblogs.com/skyfsm/p/7923015.html