讯飞星火和deepseek针对一段transformer代码给的注释

测试内容

class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): return x + self.pe[:x.size(0), :] # [seq_length, batch_size, d_model] 麻烦您帮我对这段代码进行逐行分析

讯飞星火:


 

DeepSeek:

这段代码实现了一个用于Transformer模型中的**位置编码(Positional Encoding)**模块。位置编码的作用是为序列中的每个位置添加一个独特的编码,以便模型能够区分不同位置的词或符号。以下是对代码的逐行分析:

两者对比结论:

1.从输出形式上来看,讯飞星火更有好一些。把注释嵌入到代码中。DeepSeek逐行分析。

2.从输出内容上,1)DeepSeek更详细,在文章结尾,给出一个实例,让初学者更明白模型的原理。2)DeepSeek深入到代码中,解释具体代码的含义这一点对初学者很友好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学习指南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值