线程安全与锁优化

 

1.1   java中的线程安全

线程安全是限定在多个线程之间存在共享数据访问前提下的,按照线程安全的安全程度,各种操作的共享数据可以分为:不可变、绝对线程安全、相对线程安全、线程兼容和线程对立。

线程安全的实现方法:同步和锁机制

(1)互斥同步:是常见的一种并发正确性保障手段。同步是指子啊多个线程访问共享数据时,保证数据在同一时刻只能被一个(或一些线程,在使用信号量的时候)线程使用。

而互斥是实现同步的一种手段,临界区(Critical Section),互斥量(Mutex),信号量(Semaphore)都是主要的互斥实现方式.

          Java中最基本的互斥同步手段就是synchronized关键字。注意:synchronized同步块对于同一条线程来说是可重入的;同步块在已进入的线程执行完前,会阻塞后面的线程。

除此之外还有ReentrantLock(重入锁)来实现同步。

(2) 非阻塞同步

互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能问题,因此这种同步也称为阻塞同步,它属于一种悲观的并发策略,即无论共享数据是否真的回发生竞争,它都要进行加锁。另一种处理策略是:乐观的并发策略:即先操作,如果没有其他线程争用共享数据,就操作成功;如果共享数据被争用,产生了冲突,就再采取补偿措施(常用的就是不断重复尝试)。这种策略不需要把线程挂起,因此这种同步操作称为非阻塞同步。

CAS指令需要有3个操作数,分别是:内存位置V、旧的预期值A、新值BCAS指令执行时,仅当AV的值相等时,才更新V 的值为B,否则不更新。

但是CAS存在一个逻辑漏洞:ABA问题。Atomic包中的类都是采用CAS实现的,,并通过控制变量值的版本来保证CAS操作的正确性。

3)无同步方案

        要保证线程安全,并不一定就要进行同步,两者没有因果关系。同步只是保证共享数据争用时的正确性的手段。如果一个方法本来就不涉及共享数据,自然就无需同步。

1.2   锁优化

       自旋锁与自适应自旋

互斥同步对性能最大的影响是阻塞实现,挂起线程和恢复线程的操作都需要转达内核态中完成。有时共享数据的锁定状态持续时间很短,为此进行线程挂起和恢复不值得,所以可以让当前线程并不立即放弃CPU的执行权,而是执行一个忙循环(自旋),这项技术就是自旋锁。自适应的自旋锁意味着自旋时间不固定。

       锁消除

锁消除是指虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。

      锁粗化

锁粗化就是把加锁同步的范围扩大。

       轻量级锁

该轻量级是相对于使用操作系统的互斥量来实现的传统锁而言。提升程序同步性能的依据是:对于绝大部分锁,在整个同步周期内都是不存在共享数据竞争的。

       偏向锁

它的目的是消除数据在无竞争情况下的同步原语。

 

 

 

 

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值