Hadoop分布式计算

1、Hadoop简介
Hadoop是一个能够对大量数据进行分布式处理的软件框架。
hadoop是分散存放,多份保存的,不是只存一份,存的是多份。
概括来说就是:
备份--多份
锁定--操作数据

2、Hadoop的框架最核心的设计HDFS和MapReduce
HDFS为海量的数据提供了存储。
MapReduce为海量的数据提供了计算。

3、hadoop特征
一致性:对于多份备份而言的,所有的备份数据都是相同的。
可用性:那些有,那些没有。每次操作数据都要锁定数据,锁定时不可用。
可靠性:一台机子坏了,其他的机子还能玩,因为有多备份。

4、抽屉原则(加快分布式的读写)
数据中超过一半数据被修改就能解锁,读写。但是读写只能读写数据中超过一半的那一部分数据。

5、hadoop大数据中只有插入和查询,没有删除。

6、hadoop大数据处理的意义
Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值