题目
3525:上台阶
总时间限制: 1000ms 内存限制: 65536kB
描述
楼梯有n(30 > n > 0)阶台阶,上楼时可以一步上1阶,也可以一步上2阶,也可以一步上3阶,编程计算共有多少种不同的走法。
输入
输入的每一行包括一组测试数据,即为台阶数n。最后一行为0,表示测试结束。
输出
每一行输出对应一行输入的结果,即为走法的数目。
样例输入
1
2
3
4
0
样例输出
1
2
4
7
who:关键词
int n,f[35]={0,1,2,4};//定义台阶数n,30级台阶各一多少种走法
what:关键联系
如何判断台阶走法
//1,2,4,7,13,24,44,
//7=1+2+4
//13=2+4+7
//24=13+7+4
//44+24+13+7
f[i]=f[i-1]+f[i-2]+f[i-3]
how:算法分析
解决方案:
(1)先求什么?
定义台阶走法的存储数组
int f[35]={0,1,2,4};
(2)接着求什么?
存入前30个台阶走法的归纳
for(int i=4;i<=30;i++){
f[i]=f[i-1]+f[i-2]+f[i-3];
}
(3)最后求什么
输入台阶数并输出对应的走法数,并识别输入0结束循环
#include<bits/stdc++.h>
using namespace std;
int n,f[35]={0,1,2,4};
int main(){
for(int i=4;i<=30;i++){
f[i]=f[i-1]+f[i-2]+f[i-3];
}
//多组测试数据,以输入的n=0结束
while(1)
{
cin>>n;
if(n==0) break;
cout<<f[n]<<endl;
}
return 0;
}
代码
正片开始
#include<bits/stdc++.h>
using namespace std;
int n,f[35]={0,1,2,4};
int main(){
for(int i=4;i<=30;i++){
f[i]=f[i-1]+f[i-2]+f[i-3];
}
//多组测试数据,以输入的n=0结束
while(1)
{
cin>>n;
if(n==0) break;
cout<<f[n]<<endl;
}
return 0;
}