DP 动态规划

本文介绍了动态规划在解决最大子段之和和01背包问题上的应用。通过实例解释如何计算组合数C(n, k)以及棋盘上车的走法。最大子段之和问题中,定义s[i]为以num[i]结尾的最大子段和,通过更新s[i]得到整个数列的最大子段和。01背包问题则需要在容量限制下选择物品以最大化总价值,文章简要提及了该问题的基本思路。" 111331346,10297038,Photoshop教程:绘制写实钱包,"['图像处理', 'Photoshop教程', '设计技巧', '图形创作']
摘要由CSDN通过智能技术生成

先来看2条很简单的dp的引入的题目吧:

(1)计算C(n,k)求组合数,n个数中取k个数,可以转化为更小范围的同类型的问题,第n个数取了:C(n-1,k-1),第n个数没被取:C(n-1,k)

所以呢C(n,k)=C(n-1,k-1)+C(n-1,k),对于C(n-1,k)这些子问题又可以同样的公式往上推


http://www.cnblogs.com/kkgreen/archive/2011/06/26/2090702.html这个博客里面讲得更详细,还有图看

 

(2)象棋的车从一个角到对角有多少种走法,C[i][j]就是从C[0][0]的走法数,那么C[i][j]=C[i-1][j]+C[i][j-1]

 

最大子段之和:

用num[]数组来存贮数据,s[i]表示num[i]与num[i]之前的连续子段的最大值(这个子段是num[i],num[i-1],num[i-2].....num[i-k]不一定要去到num[0]的,只要求是这个包含num[i]的子段和是最大的就行),设了这个s[i],那么s[i]=s[i-1]+num[i](s[i-1]>=0)    s[i]=num[i](s[i-1]<0)

#include<iostream>
using namespace std;
int num[10];
int 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值