- 博客(184)
- 资源 (1)
- 收藏
- 关注
原创 布林克曼方程和Darcy方程的区别
传承关系:布林克曼方程以达西方程为基础,保留其“渗透阻力与流速成正比”的核心机制,是对达西方程的精细化修正;适用范围衔接:达西方程适用于多孔介质内部(远离边界、流速均匀),布林克曼方程适用于“内部+边界区域”,实现从多孔介质内部到外部自由流场的全区域覆盖;边界匹配的关键作用:达西方程无法满足与外部斯托克斯流场的边界连续条件,而布林克曼方程通过补充粘性扩散项,成为连接“外部斯托克斯流”与“内部达西流”的桥梁,这也是该研究选择布林克曼方程的核心原因。简言之,
2025-12-15 01:17:48
493
原创 2Dpoisson问题的5点离散模板
如果将所有网格点按字典序排列成向量 (\mathbf{p}),则离散拉普拉斯算子对应一个。是最常用的二阶有限差分格式,用于近似二阶导数。以下是它的具体形式和推导。这里的矩阵表示对中心点 ((i,j)) 及其四个直接邻居的加权求和。,每行最多有 5 个非零元素(中心点和四个邻居)。在二维规则网格上,拉普拉斯算子 ∇²p 的。
2025-12-10 22:09:15
447
原创 提问的智慧
在黑客的世界里,你所提技术问题的解答的好坏, 很大程度上取决于你提问的方式与此问题的难度。本指南将教你如何正确地提问以获得你满意的答案。现在开源(Open Source)软件已经相当盛行,您通常可以从其他更有经验的用户那里获得与黑客一样好的答案,这是件好事;和黑客相比,用户们往往对那些新手常遇到的问题更宽容一些。尽管如此,以我们在此推荐的方式对待这些有经验的用户通常也是从他们那里获得有用答案的最有效方式。首先你应该明白,黑客们喜爱有挑战性的问题,或者能激发他们思维的好问题。
2025-11-13 16:34:32
578
原创 Fourier 模式与DFT的形式一致
使用xhx/hxh是为了把离散空间点转换成整数索引,使 Fourier 模式的形式与 DFT 完全一致,因此适用于离散算子的谱分析。这在离散 Laplace 算子分析中会带来什么优势;为什么频率区间可以限制为−ππ−ππ;为什么这种 Fourier 模式是差分算子稳定性分析(如 von Neumann 分析)的核心工具。只需告诉我即可。
2025-11-13 13:52:49
674
原创 C++ 类似pytorch的库,工具包,或者机器学习的生态
尽管C++不像Python那样拥有一个如PyTorch或TensorFlow的庞大生态,但仍有一些功能强大且高效的工具包,可以在C++中进行机器学习和深度学习任务。对于那些需要极高性能和嵌入式应用的场景,C++框架(如LibTorchCaffe等)依然是非常有竞争力的选择。如果只是进行较简单的机器学习任务,像Dlib和Shark也是不错的选择。
2025-11-03 15:18:33
1044
原创 对1D poisson采用二阶中心差分格式离散,离散 Laplace 矩阵 A 的特征向量就是 Fourier 模式的离散化
在多重网格方法的背景里,之前作者讨论过的 “Fourier modes” 是指离散函数空间上的。(类似于连续 Fourier 模式。用二阶中心差分离散化(网格步长。下图为几个傅里叶特征模态(比如。这个矩阵的特征值与特征向量可以。,高频模态对应的特征值更大。)和特征向量的对应关系。
2025-09-21 17:25:37
678
原创 离散系数矩阵和Jacobi迭代矩阵的特征向量是否相同的推导过程
(A = D - L - U),其中 (D) 为对角矩阵,(L) 和 (U) 分别为严格下三角和上三角矩阵。Jacobi 迭代矩阵为 (R_J = D^{-1}(L + U))。(A = D - L - U),其中 (D) 为对角矩阵,(L) 和 (U) 分别为严格下三角和上三角矩阵。Jacobi 迭代矩阵为 (R_J = D^{-1}(L + U))。
2025-09-21 17:01:28
1040
原创 emacs 如何显示断点和运行的行标
你可以深度自定义断点和执行点的视觉效果。;;自定义断点的外观(fringe 图标和背景色)启用状态的断点行背景;;自定义当前执行点的外观执行点行背景功能realgud内置 GUD断点显示自动(红色圆圈/B标记)较弱,需手动配置执行点显示自动(绿色箭头+高亮)有高亮,但需增强易用性高(图形化按钮,快捷键)中(需输入文本命令)推荐度★★★★★★★★☆☆给你的最终建议:立即安装realgud:这是解决你问题的最直接、最现代的方法。它能提供你期望的 IDE 般的断点和执行点显示。确保。
2025-09-18 20:35:09
824
原创 一个 Helmholtz 方程在 Jacobi 平滑器下失效的例子
平滑器,也可以叫做光滑因子。标准代数平滑器(Jacobi、Gauss–Seidel 等)在简单椭圆问题中表现良好,但在复杂问题(尤其是 Helmholtz 这类强非正定、振荡性问题)里无法有效“平滑”误差,甚至会导致数值不稳定。因此作者提出用 HINTS 替代标准平滑器,使多重网格方法在这类难问题上更稳健。
2025-09-10 15:36:47
998
原创 简说【高斯随机场 (GRF)】
均值函数(Mean Function),通常为了简化,会假设均值为零(μ(s) = 0),因为任何非零均值都可以通过减去均值来处理。协方差函数(Covariance Function)/核函数(Kernel Function)这是GRF的灵魂。协方差函数精确地描述了空间中任意两点s和s’之间的相关性强度。它决定了生成数据的平滑度、尺度和周期性等关键性质。特征描述重要性高斯性任何点集上的联合分布均为多元高斯分布。奠定了所有统计推断和解析处理的基础。空间自相关。
2025-09-06 22:51:37
1468
原创 unet.py代码解读【备忘录】
这是一个基于PyTorch实现的U-Net架构,用于图像分割任务。代码包含了标准的U-Net组件,并预留了多种注意力机制的接口(ECA、EMA、LSK、ELA、Biformer等)。
2025-08-29 16:21:29
382
原创 什么是自动混合精度
FP32(单精度浮点数):常规的 32 位浮点数,计算准确但速度慢、显存占用大。FP16(半精度浮点数):16 位浮点数,速度快、显存省,但精度可能不够,会有数值不稳定。混合精度重要、容易溢出的部分(比如梯度累积)用 FP32,保证稳定性。其他部分(比如卷积、矩阵乘法)用 FP16,加快速度、减少显存消耗。这样就能在速度和精度之间取得平衡。
2025-08-29 11:25:43
369
原创 【不断更新】利用空闲时间读一篇文章吧:‘It’s a Mess’: A Brain-Bending Trip to Quantum Theory’s 100th Birthday Party
2025年6月在黑尔戈兰岛上召开了量子力学大会,讨论量子力学领域的过去,现在和未来。
2025-08-24 15:22:46
1016
原创 lanczos算法的核心——Ritz向量的计算(主要思想为反向映射)
在 Lanczos 算法中,这一步,通常是指在三对角矩阵(T)的特征向量求解完成后,将其转换回原始矩阵(A)的特征向量。
2025-08-24 14:47:17
580
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
2