自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(66)
  • 问答 (2)
  • 收藏
  • 关注

原创 数据仓库(13)大数据数仓经典最值得阅读书籍推荐

从事数仓工作,在工作学习过程也看了很多数据仓库方面的数据,此处整理了数仓中经典的,或者值得阅读的书籍,推荐给大家一下,希望能帮助到大家。建议收藏起来,后续有新的书籍清单会更新到这里。书籍推荐《数据仓库工具箱(第3版)——维度建模权威指南》本书会介绍基本知识,然后逐个讨论具体实例内容,最后进行综合总体分析,在内容的结构方面很有特色。本书涉及的行业较多,但这些内容从不同角度体现了数据仓库的各个方面,因而对于完整的学习与掌握数据仓库知识显得十分必要。这本书是数据维度建模的鼻祖,从这个意义上讲,就挺有

2022-05-10 12:16:38 607 2

原创 大数据面试题集锦-Hadoop面试题(二)-HDFS

你准备好面试了吗?这里有一些面试中可能会问到的问题以及相对应的答案。如果你需要更多的面试经验和面试题,关注一下"张飞的猪大数据分享"吧,公众号会不定时的分享相关的知识和资料。

2023-01-16 21:08:12 214

原创 利用WordPress搭建属于自己的网站

怎么用WordPress给自己搭建了一个网站?可能很多人都想拥有属于自己的网站,这篇文章就找你怎么利用WordPress搭建属于自己的网站。如果你也正好有搭建个人网站的想法,那么本文会给你一个参考,我尽量写的比较详细,给自己做一个记录,也给大家一个参考。

2022-12-26 20:22:12 404

原创 ClickHouse(14)ClickHouse合并树MergeTree家族表引擎之VersionedCollapsingMergeTree详细解析

VersionedCollapsingMergeTree引擎继承自MergeTree并将折叠行的逻辑添加到合并数据部分的算法中。VersionedCollapsingMergeTree用于相同的目的折叠树但使用不同的折叠算法,允许以多个线程的任何顺序插入数据。特别是,Version列有助于正确折叠行,即使它们以错误的顺序插入。相比之下,CollapsingMergeTree只允许严格连续插入。

2022-11-11 22:42:26 340 1

原创 ClickHouse(13)ClickHouse合并树MergeTree家族表引擎之CollapsingMergeTree详细解析

该引擎继承于MergeTree,并在数据块合并算法中添加了折叠行的逻辑。CollapsingMergeTree会异步的删除(折叠)这些除了特定列Sign有1和-1的值以外,其余所有字段的值都相等的成对的行。没有成对的行会被保留。因此,该引擎可以显著的降低存储量并提高SELECT查询效率。简单来说就是,clickhouse会自动的合并有效和无效的数据,减少数据存储,并减少update所产生的性能消耗。具体的逻辑,下面介绍。

2022-10-24 19:37:13 897

原创 ClickHouse(12)ClickHouse合并树MergeTree家族表引擎之AggregatingMergeTree详细解析

AggregatingMergeTree引擎继承自 MergeTree,并改变了数据片段的合并逻辑。ClickHouse会将一个数据片段内所有具有相同主键(准确的说是排序键)的行替换成一行,这一行会存储一系列聚合函数的状态。可以使用AggregatingMergeTree表来做增量数据的聚合统计,包括物化视图的数据聚合。AggregatingMergeTree适用于能够按照一定的规则缩减行数的情况。

2022-10-07 22:00:00 683 1

原创 ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析

SummingMergeTree引擎继承自MergeTree。区别在于,当合并SummingMergeTree表的数据片段时,ClickHouse会把所有具有相同主键的行合并为一行,该行包含了被合并的行中具有数值数据类型的列的汇总值。如果主键的组合方式使得单个键值对应于大量的行,则可以显著的减少存储空间并加快数据查询的速度。一般SummingMergeTree和MergeTree一起使用。

2022-10-06 22:00:00 684

原创 ClickHouse(10)ClickHouse合并树MergeTree家族表引擎之ReplacingMergeTree详细解析

创建ReplacingMergeTree表的参数中,与MergeTree不同的是[ver]。在数据合并的时候,ReplacingMergeTree 从所有具有相同排序键的行中选择一行留下:如果ver列未指定,保留最后一条。ReplacingMergeTree是另外一个常用的表引擎,ReplacingMergeTree和MergeTree的不同之处在于它会删除排序键值相同的重复项。因此,ReplacingMergeTree适用于在后台清除重复的数据以节省空间,但是它不保证没有重复的数据出现。

2022-10-05 22:30:23 724

原创 大数据面试题集锦-Hadoop面试题(一)

你准备好面试了吗?这里有一些面试中可能会问到的问题以及相对应的答案。

2022-10-04 23:38:43 722

原创 ClickHouse(09)ClickHouse合并树MergeTree家族表引擎之MergeTree引擎详细解析

Clickhouse中最强大的表引擎当属MergeTree(合并树)引擎及该系列(MergeTree)中的其他引擎。MergeTree系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合并。相比在插入时不断修改(重写)已存储的数据,这种策略会高效很多。

2022-10-03 20:46:13 626 1

原创 ClickHouse(08)ClickHouse表引擎概况

目前ClickHouse的表引擎主要有下面四个系列,合并树家族、日志引擎系列、集成的表引擎和其他特殊的引擎。#合并树家族Clickhouse中最强大的表引擎当属MergeTree(合并树)引擎及该系列(MergeTree)中的其他引擎。MergeTree系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合并。相比在插入时不断修改(重写)已存储的数据,这种策略会高效很多。#日志引擎系列。

2022-10-02 21:57:15 455 1

原创 猿创征文|python连接操作达梦数据库

DMPython 是 DM 提供的依据 Python DB API version 2.0 中 API 使用规定而开发的数据库访问接口。DMPython 实现这些 API,使 Python 应用程序能够对 DM 数据库进行访问。DMPython 通过调用 DM DPI 接口完成 Python 模块扩展。在其使用过程中,除 Python 标准库以外,还需要 DPI 的运行环境。获取达梦 python 驱动源码并解压。DM 数据库:DM 8.0 及以上版本。

2022-10-01 22:31:52 1159

原创 ClickHouse(07)ClickHouse数据库引擎解析

ClickHouse几种数据库引擎,已经对应的特点和应用的场景。数据库引擎允许您处理数据表。默认情况下,ClickHouse使用Atomic数据库引擎。它提供了可配置的table engines和SQL dialect。目前的数据库引擎:* MySQL* MaterializeMySQL* Lazy* Atomic* PostgreSQL* MaterializedPostgreSQL* Replicated* SQLite

2022-09-26 16:30:16 335

原创 ClickHouse(06)ClickHouse建表语句DDL详细解析

DEFAULT是在插入的时候计算填充,MATERIALIZED和ALIAS是在查询的时候,或者说用到的时候填充,而EPHEMERAL,有点类似于我们在建表的时候,创建一个变量,一个代码块。特殊编码与通用的压缩算法相比,区别在于,通用的LZ4和ZSTD压缩算法是普适行的,不关心数据的分布特点,而特殊编码类型对于特定场景下的数据会有更好的压缩效果。无论是列级别还是表级别的TTL,都需要依托某个DateTime或Date类型的字段,通过对这个时间字段的INTERVAL操作,来表述TTL的过期时间。

2022-09-16 17:17:46 550

原创 数据仓库数据治理数据管理实践心得

聊聊对数据治理开发实践的一些思路,聊聊怎么开始去做数据治理这件事情。说起数据治理,有时候虽然看了很多文章,看了很多的介绍,了解数据治理的理论,但是实际上需要我们去搞的时候,就会踩很多的坑。这里记一下自己做数据治理的一些思路,做做笔记,也分享给需要的同学。当然,想要做数据治理,想要学习了解,一下数据治理的范围,理论等,一般来说数据治理的范围包含下面几个部分。那接下来就继续说说数据治理的一些思路心得。接到数据治理的任务?要怎么做?

2022-09-16 16:35:10 119

原创 ClickHouse(05)ClickHouse数据类型详解

ClickHouse属于分析型数据库,ClickHouse提供了许多数据类型,它们可以划分为基础类型、复合类型和特殊类型。其中基础类型使ClickHouse具备了描述数据的基本能力,而另外两种类型则使ClickHouse的数据表达能力更加丰富立体。

2022-09-02 12:12:59 829

原创 linux如何配置ssh密钥登录

ssh-keygen为ssh生成、管理和转换认证密钥,ssh-keygen命令用于为“ssh”生成、管理和转换认证密钥,它支持RSA和DSA两种认证密,SSH 密钥默认保留在 ~/.ssh 目录中。这里需要注意,如果 authorized_keys 文件、$HOME/.ssh 目录 或 $HOME 目录让本用户拥有者之外的用户有写权限,那么 sshd 就会拒绝使用 ~/.ssh/authorized_keys 文件中的 key 来进行认证。购买的服务器设置密码很容易被暴力破解,用密钥登录安全很多。...

2022-08-03 20:15:36 1068

原创 ClickHouse(04)如何搭建ClickHouse集群

ClickHouse集群的搭建和部署和单机的部署是类似的,主要在于配置的不一致,如果需要了解ClickHouse单机的安装设部署,可以看看这篇文章,ClickHouse(03)ClickHouse怎么安装和部署。ClickHouse集群部署流程大概如下:按照ClickHouse(03)ClickHouse怎么安装和部署中的介绍下载即可配置hosts文件在每台机器上安装单机版ClickHouse按照ClickHouse(03)ClickHouse怎么安装和部署中的介绍安装即可要配置集群,需要在 /

2022-07-12 20:30:13 675

原创 ClickHouse(03)ClickHouse怎么安装和部署

本文会介绍如何安装和部署ClickHouse,官方推荐的几种安装模式,以及安装之后如何启动,ClickHouse集群如何配置等。简单来说,ClickHouse的搭建流程如下:这里先介绍单机的Click House的搭建和启动,下一篇会介绍搭建Click House集群需要配置的东西。ClickHouse可以在任何具有x86_64,AArch64或PowerPC64LE CPU架构的Linux,FreeBSD或Mac OS X上运行。官方预构建的二进制文件通常针对x86_64进行编译,并利用SSE4.2指令集

2022-07-05 16:42:18 560

原创 ClickHouse(02)ClickHouse架构设计介绍概述与ClickHouse数据分片设计

ClickHouse核心架构设计是怎么样的?ClickHouse核心架构模块分为两个部分:ClickHouse执行过程架构和ClickHouse数据存储架构,下面分别详细介绍。总的来说,结合目前搜集到的一些资料,可以看到目前ClickHouse核心架构由下图构成,主要的抽象模块是Column、DataType、Block、Functions、Storage、Parser与Interpreter。简单来说,就是一条sql,会经由Parser与Interpreter,解析和执行,通过调用Column、DataT

2022-06-20 20:06:42 420

原创 ClickHouse(01)什么是ClickHouse,ClickHouse适用于什么场景

ClickHouse的由来ClickHouse是什么数据库?ClickHouse速度有多快?应用场景是怎么样的?ClickHouse是关系型数据库吗?ClickHouse目前是很火爆的一款面向OLAP的数据,可以提供秒级的大数据查询。Google于2003~2006年相继发表了三篇论文“Google File System”“Google MapReduce”和“Google Bigtable”,将大数据的处理技术带进了大众视野。2006年开源项目Hadoop的出现,标志着大数据技术普及的开始,大数据技

2022-05-30 23:52:56 1552

原创 数据仓库(12)数据治理之数仓数据管理实践心得

这边文章聊聊自己对数据治理开发实践的一些思路,就是聊聊怎么开始去做数据治理这件事情。说起数据治理,有时候虽然看了很多文章,看了很多的介绍,了解数据治理的理论,但是实际上需要我们去搞的时候,就会踩很多的坑。这里记一下自己做数据治理的一些思路,做做笔记,也分享给需要的同学。当然,想要做数据治理,想要学习了解,一下数据治理的范围,理论等,最好可以看看别人怎么做的,了解数据治理可以参考:数据仓库(11)什么是大数据治理,数据治理的范围是哪些。那接下来就继续说说数据治理的一些思路心得。接到数据治理的任务?要怎么

2022-05-10 12:13:33 388

原创 数据仓库(11)什么是大数据治理,数据治理的范围是哪些

什么是数据治理,数据治理包含哪些方面?大数据时代的到来,给了我们很多的机遇,也有很多的挑战。最基础的调整也是大数据的计算和管理,数据治理是一个特别重要的大数据基础,他保证着数据能否被最好的应用,保证着数据的安全,治理等。那么数据治理到底能治什么,怎么治?数据治理主要包含七个方面。主数据管理即数据本身的管理,对于数据本身,基于数据仓库,我们做了数据的分层、数据域的划分、基于维度建模的架构、命名规范、对需要共享的数据建立统一视图和集中管理等,这些都是属于这个主数据管理的范围。元数据管理元数据,即数据

2022-05-06 21:35:47 1535

原创 数据仓库(10)数仓拉链表开发实例

拉链表是数据仓库中特别重要的一种方式,它可以保留数据历史变化的过程,这里分享一下拉链表具体的开发过程。维护历史状态,以及最新状态数据的一种表,拉链表根据拉链粒度的不同,实际上相当于快照,只不过做了优化,去除了一部分不变的记录,通过拉链表可以很方便的还原出拉链时点的客户记录。这里用商品价格的变化作为例子,具体的开发过程要按实际的来,不能照搬代码,编程重要的是了解背后的思路和原理,而不是ctrl+c和ctrl+v。那对我们学习提升的帮助有限,虽然可能对完成工作的效率帮助很大。在开始介绍之前,这里的数据

2022-05-06 21:14:30 749

原创 数据仓库(9)数仓缓慢变化维度数据的处理

  数据仓库的重要特点之一是反映历史变化,所以如何处理维度的变化是维度设计的重要工作之一。缓慢变化维的提出是因为在现实世界中,维度的属性并不是静态的,它会随着时间的流逝发生缓慢的变化,与数据增长较为快速的事实表相比,维度变化相对缓慢。阴齿这个就叫做缓慢变化维。  这里介绍的就是这些维度变化的处理,这边整理了一下目前主流的缓慢变化维的处理方式。原样保留或者重写,这种方式理论上都是取最新的值作为维度的最终的取值,每个维度保留一条数据。这种处理方式是最简单的,直接将原系统的维度同步过来使用就可以,不用做

2022-04-26 17:12:52 566

原创 数据仓库(8)数仓事实表和维度表技术

所谓的事实表和维度表技术,指的就是如何和构造一张事实表和维度表,是的事实表和维度表,可以涵盖现在目前的需要和方便后续下游数据应用的开发。事实表,就是一个事实的集合。事实来自业务过程的度量,基本上以数量值表示。事实表行对应一个事实,一个事实对应一个物理可以观察的事件,例如,再零售事件中,销售数量与总额是数据事实,与销售事件不相关的度量不可以放在同一个事实表里面,如员工的工资。事实表是实际发生的度量,对应的,这些度量我们可以分为三中类型:可加、半可加、不可加。可加性度量可以按照与事实表关联的任意维度汇总。半

2022-04-20 21:21:05 722 5

原创 数据仓库(7)数仓规范设计

规范设计在这里取《大数据之路:阿里巴巴大数据实践》中的定义,这里记录一下本人对这一块自己的理解。规范定义指以维度建模作为理论基础 构建总线矩阵,划分和定义数据域、业务过程、维度、度量 原子指标、修饰类型、修饰词、时间周期、派生指标。所谓的规范的定义,简单理解,如果把数据当作货物,那就是货物的分类,以及对应相关的属性,比如生产日期,某个原料的含量等,我们可以把相近或者相同货物,按照一定的规律,放在一起,方便入库与出库,需要某个货物按照这些规律就可以,以比较快的速度拉取出来。一般的规范设计包含一下几

2022-04-20 12:15:33 1637

原创 数据仓库推荐经典书籍资料包分享

本人整理了数据仓库推荐经典书籍资料包,学习数据仓库必备,包含下面的内容,包含阿里巴巴大数据之路和数据仓库工具箱等经典书籍。点击阅读下面文章,关注一下公众号,回复“数据仓库”获取下载链接。数据仓库推荐经典书籍资料包分享(建议收藏)个人公众号会不定时分享技术学习的文章和资料,欢迎关注。...

2022-04-17 05:09:48 262 1

原创 数据仓库(6)数仓分层设计架构

  目前主流的数据仓库分层大多为四层,也有五层的架构,这里介绍基本的四层架构。 分别为数据贴源层(ods)、数据仓库明细层(dw)、多维明细层(dws)和数据集市层(dm)。  下面是架构图:  数据分层的目的是:减少重复计算,避免烟囱式开发,节省计算资源,靠上层次,越对应用友好,也对用户友好,希望大部分(80%以上)的需求,都用DWS,DW的表来支持就行,所以ODS层数据不能被DM层任务引用,需要抽取数据到DW,或者DWS。  DWS汇总层应优先调用DW明细层。在调用可累加类指标计算时,DWS汇

2022-04-14 11:48:52 2530

原创 数据仓库(5)数仓Kimball与Inmon架构的对比

数据仓库主要有四种架构,Kimball的DW/BI架构、独立数据集市架构、辐射状企业信息工厂Inmon架构、混合Inmon与Kimball架构。不过不管是那种架构,基本上都会使用到维度建模。Kimball的DW/BI架构,可以参考这篇文章 数据仓库(4)基于维度建模的KimBall架构。独立数据集市架构,采用这种架构的数据仓库,数据以部门为基础来部署,不考虑企业级别的信息共享和集成。也就是各个部门各自按照需要,各自在数据源同步数据,按照各自的标准,对数据进行处理。这种实际上就是没有架构,会造成分析数据的

2022-03-31 14:52:22 1759

原创 如何在centos7中完全卸载Python3

根据查到的资料,主要就是卸载,然后删除一些软连接删除干净,逻辑很简单,贴一些具体的操作代码,记录下来 。卸载Python3的步骤#卸载python3rpm -qa|grep python3|xargs rpm -ev --allmatches --nodeps #删除所有残余文件whereis python3 |xargs rm -frv#查看现有安装的python,验证是否删除干净whereis python ...

2022-03-01 19:44:55 6466 3

原创 数据仓库(4)基于维度建模的数仓KimBall架构

  基于维度建模的KimBall架构,将数据仓库划分为4个不同的部分。分别是操作型源系统、ETL系统、数据展现和商业智能应用,如下图。  操作型源系统,指的就是面向用户的各类系统,如app、网站、ERP、CRM等系统。这一块就是我们数据仓库的数据来源,并且这类数据往往有各自的格式和内容,我们同步过来之后,需要对数据进行清洗和规范化。  ETL系统,指的就是获取、转换、加载的(Extract Transformation and Load)过程以及在etl过程中使用到的数据和数据结构这样的一个过程的集合

2022-02-23 19:22:54 332

原创 数据仓库(3)数仓建模之星型模型与维度建模

  维度建模是一种将数据结构化的逻辑设计方法,也是一种广泛应用的数仓建模方式,它将客观世界划分为度量和上下文。度量是常常是以数值形式出现,事实周围有上下文包围着,这种上下文被直观地分成独立的逻辑块,称之为维度。它与实体-关系建模有很大的区别,实体-关系建模是面向应用,遵循第三范式,以消除数据冗余为目标的设计技术。维度建模是面向分析,为了提高查询性能可以增加数据冗余,反规范化的设计技术。上面的解释看起来是比较抽象,一下子可能不是很容易懂。我们先来了解一下事实和维度,基于上面再来分析一下。  事实,表示的

2022-02-15 23:04:39 1246

原创 python中,Microsoft Visual C++ 14.0 or greater is required问题解决方案

今天在写一个小程序,安装依赖的时候发现这个问题,平时都是直接安装Visual Studio解决,但是这个安装太大了,所以解决看看怎么安装是最方便的,最容易解决的。下面这个就是出现的问题:building 'bitarray._bitarray' extensionerror: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.m

2022-02-10 10:37:44 5869 6

原创 数据仓库(2)数仓、大数据与传统数据库的区别

数据仓库与大数据区别,数据仓库与数据库的区别,大数据与传统数据库的区别

2022-02-07 19:23:34 3598

原创 数据仓库(1)什么是数据仓库,数仓有什么特点

数据仓库,简称数仓,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。这里会介绍涉及的数仓数据开发技术,数仓的作用,数仓的特点等。

2022-01-28 12:03:00 2914

原创 sqoop merge语法与具体的实例使用

sqoop merge用法与具体的实例

2018-08-28 22:35:58 1653

原创 查看java虚拟机内存GC的情况

通过ps命令查询PIDps -ef | grep [进程关键字]使用jinfo命令查询该进程的JVM参数设置jinfo [PID]使用jmap查看进程中内存分代使用的情况jmap -heap [PID]dump转存 jvm的Heap当前情况,然后可以通过mat工具进行分析jvm的head情况jmap -dump:live,format=b,file=/tmp/***...

2018-08-28 22:29:17 2180

原创 Ubuntu配置apt-get更新源设置为国内镜像源

Ubuntu 16.04下载软件速度有点慢,因为默认的是从国外下载软件,那就更换到国内比较好的快速更新源(就是这些软件所在的服务器),一般直接百度Ubuntu更新源就能出来一大堆,这时候最好是找和自己Ubuntu版本一致的更新源,我的Ubuntu版本是16.04,下面是我找到的一个比较好的更新源。1 寻找国内镜像源https://mirrors.tuna.tsinghua.edu.cn/h.........

2018-08-28 22:24:06 6017

原创 Linux(ubantu17.4)安装JDK并配置环境变量

Linux(ubantu)安装JDK并配置环境变量平台Linux(ubantu17.4)下载地址http://www.oracle.com/technetwork/java/javase/downloads/index.html安装步骤1 下载,然后解压缩到指定目录sudo mkdir /usr/local/javasudo tar -zxvf jdk-7u60-linux-x64......

2018-08-28 22:21:09 165

sparkSQL底层实现原理-sparkSQL调优资料包附课件、代码、资料

sparkSQL资料包,包含了sparkSQL底层实现原理+sparkSQL调优两个部分。还提供了代码实例。sparkSQL底层实现原理 sparkSQL调优资料 sparkSQL相关代码实例

2022-10-08

行业经典的大数据化经营解决方案|大数据化运营案例|大数据智能化解决方案|大数据数据治理及大数据可视化解决方案|大数据平台设计方案

地产、电力、建筑、零售、能源化工、时尚、物流、医院、银行总计九个行业数据化经营解决方案。从数据采集、数据处理、数据仓库、数据可视化,包含整个数据处理生命周期的行业数据化经营解决方案,贴近行业业务,经典的数据化经营解决方案。 企业数据化运营方案遇到的主要问题,及其相关的解决思路,解决方式。为企业构建汇、融、管、用的一站式、自助式的大数据处理全流程解决方案。涵盖数据接入、存储、处理、分析、可视化等产品和服务,大幅降低大数据消费门槛,助力以数据为驱动的业务变革与发展。 数据化运营正是通过数据监测、数据分析、数据智能、数据创新来实现的,只是运用的范围和层次不同。 数字化运营自横空出世以来,便迅速走红。互联网时代,每个公司都期待着通过信息化、数字化的方式给品牌注入新的力量。 数字经营带来标准与精确品牌重塑。数字运营是通过新技术和新数据能力重塑各环节、升级体验、提高运营效率的方法。 数字经营是一种较为规范的运作方式。把原本根据人的经验判断执行的操作方法转变成了自动化的操作方式,如重复的客户服务工作、消费者常见的引导咨询。如此大量、重复、耗费人力的工作,使从业人员可以将更具有创造性的工作。

2022-09-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除