1)划分子表
2)合并半子表
首先我们来讨论归并算法,归并算法将一系列数据放到一个向量中,索引范围为[first,last],这个序列由两个排好序的子表构成,以索引终点(mid)为分界线,以下面一个序列为例
7,10,19,25,12,17,21,30,48
这样的一个序列中,分为两个子序列 7,10,19,25 和 12,17,21,30,48,如下图所示:
再使用归并算法的时候的步骤如下:
第一步:比较v[indexA]=7和v[indexB]=12,将较小的v[indexA]取出来放到临时向量tempArray中,然后indexA加1
第二步:比较v[indexA]=10和v[indexB]=12,将较小的10放到临时变量tempArray中,然后indexA++;
第三步:比较v[indexA]=19与v[indexB]=12,将较小的12存放到临时变量tempArray中,然后indexB++;
第四步到第七步:按照以上规则,进行比对和存储,得到如下结果:
最后一步:将子表b中剩余项添加到临时向量tempArray中
然后将临时变量中的值按照索引位置,拷贝回向量v中,就完成了对向量v的归并排序
算法函数为:
public void Merger(int[] v, int first, int mid, int last)
{
Queue<int> tempV = new Queue<int>();
int indexA, indexB;
//设置indexA,并扫描subArray1 [first,mid]
//设置indexB,并扫描subArray2 [mid,last]
indexA = first;
indexB = mid;
//在没有比较完两个子标的情况下,比较 v[indexA]和v[indexB]
//将其中小的放到临时变量tempV中
while (indexA < mid && indexB < last)
{
if (v[indexA] < v[indexB])
{
tempV.Enqueue(v[indexA]);
indexA++;
}
else
{
tempV.Enqueue(v[indexB]);
indexB++;
}
}
//复制没有比较完子表中的元素
while (indexA < mid)
{
tempV.Enqueue(v[indexA]);
indexA++;
}
while (indexB < last)
{
tempV.Enqueue(v[indexB]);
indexB++;
}
int index = 0;
while (tempV.Count > 0)
{
v[first+index] = tempV.Dequeue();
index++;
}
}
实现归并排序;归并排序算法分为两步,第一步:先将原来的数据表分成排好序的子表,然后调用 Merger 对子表进行归并,使之成为有序表,例如有如下向量:
25,10,7,19,3,48,12,17,56,30,21
对此序列进行归并排序的步骤为:
归并算法函数为
public void MergerSort(int[] v, int first, int last)
{
if (first + 1 < last)
{
int mid = (first + last) / 2;
MergerSort(v, first, mid);
MergerSort(v, mid, last);
Merger(v, first, mid, last);
}
}
归并算法的划分子表和归并子表与原数据序列次序无关,因此算法的最坏情况,最坏情况和平均情况时间复杂度是一样的
下面是归并算法的函数调用图