python 三位数字黑洞

本文探讨如何用编程实现一个算法,通过反复排列三位数并计算差值,直到得到495,记录所需变换次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个三位数,要求各位不能相同。例如,352 是符合要求的,112 是不符合要求的。将这个三位数的三个数字重新排列,得到的最大的数,减去得到的最小的数,形成一个新的三位数。对这个新的三位数可以重复上述过程。神奇的是,最终一定会得到 495!

试试看,重新排列 352,得到的最大数为 532,最小数为 235,它们的差是 297;变换 297,得到 972−279=693;变换 693,962−369=594;变换 594,954−459=495。因此,经过 44 次变换得到了 495。

现在,输入的三位数,你能通过编程得出,这个三位数经过多少次变换能够得到 495495 吗?

上代码:

a = input()
s = 0
x = list(sorted(a))
n = 0
while s != '495':
    xb = int(float(''.join(x)[::-1]))
    s = str(xb-int(''.join(x)))
    x = list(sorted(s))
    n += 1

print(n)

如果觉得还行请点个赞鼓励一下   我尽力了

如有雷同请和我说

### Python 实现黑洞算法 #### 黑洞数概念解释 黑洞数是一种特殊的整数现象,在特定操作下最终会收敛到某个固定的数值。对于不同位数的数字,存在不同的黑洞数。例如: - 对于三位数来说,黑洞数是 **495**。 - 对于四位数而言,则为 **6174**。 当对一个多位正整数执行某种运算(通常是组成该数的最大排列减去最小排列),经过有限次迭代之后总会得到上述提到的那个固定值[^3]。 #### 完整版Python代码实现 为了更清晰地展示如何通过编程方式找到并验证这些神奇的数学特性,这里提供一段完整的Python脚本用于计算任意给定位数下的黑洞数: ```python def find_black_hole_number(n_digits): """寻找指定长度n_digits的黑洞数""" def sort_descending(num_as_str): return ''.join(sorted(num_as_str, reverse=True)) def sort_ascending(num_as_str): return ''.join(sorted(num_as_str)) seen_numbers = set() current_num = '9' * n_digits while True: if int(current_num) == 0 or len(set(current_num)) < 2: break larger_num = int(sort_descending(current_num)) smaller_num = int(sort_ascending(current_num)) next_num = str(larger_num - smaller_num).zfill(n_digits) if next_num in seen_numbers: print(f"{next_num} 是 {n_digits}-digit 的黑洞数.") return seen_numbers.add(next_num) current_num = next_num if __name__ == "__main__": digits_input = input("请输入想要查找几位数的黑洞数:") try: digit_count = int(digits_input.strip()) if not (1 <= digit_count <= 10): raise ValueError("仅支持1至10位之间的数字") find_black_hole_number(digit_count) except Exception as e: print(e) ``` 这段代码定义了一个`find_black_hole_number()` 函数来模拟这一过程,并允许用户输入他们感兴趣的数字位数以探索对应的黑洞数[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值