本文主要记录和总结本人在阅读《Python标准库》一书,文本这一章节的学习和理解。
其实在Python中,使用文本这样的一些方法是特别常用的一件事。在一般的情况下,都会使用String这样的一个类,应该算是Python中最基础的一个标准类了。
1.3.6 用组解析匹配
match.groups()会按照表达式中与字符串匹配的组的顺序返回一个字符串序列。
使用group()可以得到某个组的匹配。
Python对基本分组的语法进行了拓展,增加了命名组(named group)。通过名字来指示组,方便可以更容易的修改模式,而不必同时修改使用了该匹配结果的代码。
语法:(?P<name>pattern)
使用groupdict()可以获取一个字典,它将组名映射到匹配的子串。
其实在Python中,使用文本这样的一些方法是特别常用的一件事。在一般的情况下,都会使用String这样的一个类,应该算是Python中最基础的一个标准类了。
1.3.6 用组解析匹配
match.groups()会按照表达式中与字符串匹配的组的顺序返回一个字符串序列。
使用group()可以得到某个组的匹配。
#组解析
text='This is a text -- with punctuation.'
print 'Input text: ', text
regex=re.compile(r'(\bt\w+)\W+(\w+)')
print 'pattern: ', regex.pattern
match=regex.search(text)
print 'Entire match: ',match.group(0)
print 'Word starting with t: ',match.group(1)
print 'Word after t word: ',match.group(2)
Python对基本分组的语法进行了拓展,增加了命名组(named group)。通过名字来指示组,方便可以更容易的修改模式,而不必同时修改使用了该匹配结果的代码。
语法:(?P<name>pattern)
#命名组
print '-'*30
for pattern in [r'^(?P<first_word>\w+)',
r'(?P<last_word>\w+)\S*$',
r'(?P<t_word>\bt\w+)\W+(?P<other_word>\w+)',
r'(?P<ends_with_t>\w+t)\b'
]:
regex=re.compile(pattern)
match=regex.search(text)
print 'Matching "%s"' % pattern
print ' ',match.groups()
print ' ',match.groupdict()
print '\n'
使用groupdict()可以获取一个字典,它将组名映射到匹配的子串。
#更新后的test_pattern()
print '-'*30
def test_pattern(text, patterns=[]):
"""
Given the source text and a list of patters,
look for matches for each pattern within the text and print them to stdout.
"""
#look for each pattern in the text and print the results
for pattern, desc in patterns:
print 'pattern %r (%s) \n' %(pattern, desc)
print '%r' % text
for match in re.finditer(pattern,text):
s=match.start()
e=match.end()
prefix=' '*(s)
print ' %s%r%s' % (prefix,text[s:e],' '*(len(text)-e))
print match.groups()
if match.groupdict():
print '%s%s'%(' '*(len(text)-s),match.groupdict())
print
return
test_pattern(
'abbaabbba',
[ (r'a((a*)(b*))','a followed by 0-n a and 0-n b'),]
)