hdu 1754 I Hate It(单点更新+查询区间最大值)

很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。

不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。

Input
本题目包含多组测试,请处理到文件结束。
在每个测试的第一行,有两个正整数 N 和 M ( 0 < N<=200000,0 < M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取’Q’或’U’) ,和两个正整数A,B。
当C为’Q’的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为’U’的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。

Output
对于每一次询问操作,在一行里面输出最高成绩。

Sample Input

5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5

Sample Output

5
6
5
9

Hint

Huge input,the C function scanf() will work better than cin

本题需要注意:真是一不小心就会t

#include<bits/stdc++.h>
using namespace std;

const int N = 200000 + 10;

struct node
{
    int l, r, w;
}tree[N<<2];

void build(int l, int r, int rt)
{
    tree[rt].l = l; tree[rt].r = r;
    if(l == r){
        scanf("%d", &tree[rt].w);
        return;
    }
    int m = (l + r) >> 1;
    build(l, m, rt<<1);
    build(m+1, r, rt<<1|1);
    tree[rt].w = max(tree[rt<<1].w, tree[rt<<1|1].w);
}

void change(int rt, int pos, int s)
{
    if(tree[rt].l == tree[rt].r){
        tree[rt].w = s;
        return;
    }
    int m = (tree[rt].l + tree[rt].r) >> 1;
    if(pos <= m)    change(rt<<1, pos, s);
    else            change(rt<<1|1, pos, s);
    tree[rt].w = max(tree[rt<<1].w, tree[rt<<1|1].w);
}

int query(int rt, int l, int r)
{
    if(tree[rt].l == l && tree[rt].r == r)
    {
        return tree[rt].w;
    }
    int m = (tree[rt].l + tree[rt].r)>>1;
    if(r <= m)  return query(rt<<1, l, r);//要查询区间完全在左子树上
    else if(l > m)  return query(rt<<1|1, l, r);//要查询区间完全在右子树上
     //要查询区间分为两部分,取其中最大的一个
    else return max(query(rt<<1, l, m), query(rt<<1|1, m+1, r));
}

int main()
{
    int n, m, l, r;
    char c;
    while(scanf("%d%d", &n, &m)!=EOF){
        build(1, n, 1);
        while(m--){
            getchar();//必须有 且不能写成先scanf(%c)再scanf(&l, &r)不然会t t了n遍
            scanf("%c%d%d", &c, &l, &r);
            if(c == 'Q'){
                printf("%d\n", query(1, l, r));
            }
            else{
                change(1, l, r);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值