pytorch
文章平均质量分 84
深度学习框架pytorch的学习
lingchen1906
这个作者很懒,什么都没留下…
展开
-
【Pytorch】深度学习框架pytorch的安装
查看pytorch的版本、测试cuda是否可用及其数量、查看GPU的版本的代码原创 2023-02-06 15:59:16 · 253 阅读 · 0 评论 -
【深度学习数学基础之线性代数】研究使用链式法则进行反向传播的求导算法
简单的说链式法则就是原本y对x求偏导,但是由于过程较为复杂,我们需要将函数进行拆分,通过链式进行分别求导,这样会使整个计算更为简单。假设f = k ( a + b c ) f = k(a + bc)f=k(a+bc)通俗来说,链式法则表明,知道z相对于y的瞬时变化率和y相对于x的瞬时变化率,就可以计算z相对于x的瞬时变化率作为这两个变化率的乘积。其实就是求复合函数导数的过程。用链式法则(将这些梯度表达式链接起来相乘。原创 2023-01-20 10:57:26 · 1494 阅读 · 0 评论 -
【Pytorch基础(3)】张量的拼接,拆分与统计
张量的拼接主要通过cat()和stack()函数实现。其中torch.cat([a, b], dim=n)是在n维度上进行两个张量的拼接,其参数n的含义代表要进行拼接操作的维度,a和b则代表要拼接的张量。在使用cat()方法时需要注意的是两个张量除了拼接的维度可以不同,其他的维度必须相同,否则会报错。示例如下:torch.stack([a, b], dim=n)是拼接两个张量a,b时,在维度n之前生成一个新的维度。原创 2023-01-19 20:37:04 · 1891 阅读 · 0 评论 -
【Pytorch基础(2)】张量的索引,切片与维度变换
举例如下:[2, 3, 32, 32] + [3,1,1] 是不能直接相加的。Broadcast机制会先将 [3,1,1] 增加新维度变为 [1, 3, 1, 1] (等价于unsqueeze()方法),然后再将 [1, 3, 1, 1]扩展维度为 [2, 3, 32, 32] (等价于expand()方法)从某种程度上说,原创 2023-01-19 19:50:15 · 3113 阅读 · 0 评论 -
【Pytorch基础(1)】pytorch的基本数据类型:张量
PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是 PyTorch 与其他框架相比可以实现低得多的开销的主要原因之一。原创 2022-11-19 08:36:22 · 2124 阅读 · 0 评论