- 博客(4)
- 收藏
- 关注
原创 通俗讲解深度强化学习经典算法——DQN
DQN的核心思想就是训练一个Q网络,这个Q网络输入当前环境的状态,输出为agent所有动作的Q值,agent选择具有最大Q值的动作作为当前时刻的行动,以此循环往复直至回合结束。上述就是DQN的整体思想。此外,为了更好地训练Q网络以及保证算法的稳定性,论文提出了经验回放缓冲池、目标网络的思想,后续会详细讲解。
2024-08-17 21:29:43
4104
原创 深度强化学习(DRL)算法(DQN、DDPG、PPO、SAC等)完整代码实现
一个深度强化学习算法实现的GitHub项目,包含DQN、DDPG、PPO、SAC等主流算法的完整代码。项目特点包括:代码简洁易读,依赖包常见,环境兼容性好;每个算法独立文件夹,运行简单;已实现DDPG、DQN及其变体、PPO、SAC等多种算法。项目提供了实验结果展示和丰富的参考资料,包括关键论文、技术博客和相关课程链接。该项目适合强化学习初学者和研究者使用,遇到问题可在GitHub提交issue。项目持续更新中,欢迎贡献和star支持。
2024-07-12 16:01:46
818
6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅