1.算法的时间复杂度

在这里插入图片描述
时间的复杂度其实主要看最深层循环循环了几次
举例1

public static void love(int n){
    for (int i = 1; i <=n; i++) {
        System.out.println("I Love You!");
    	}
    }

最里面执行n次,时间复杂度为O(n)

举例2

 public static void love(int n){
    for (int i = 1; i < n; i++) {
        System.out.println("I Love You!");
        for (int j = 0; j < n; j++) {
            System.out.println("Love You!");
        	}
    	}
    }

最里面执行n*n次,时间复杂度为O(n2)

举例3

public static void love(int n){
    for (int i = 1; i < n; ) {
        i*=2;
        System.out.println("I Love You!");
    	}
    }

设最里面执行k次,2k>n停止
故最里面执行log2n次,时间复杂度为O(log2n)

举例4

public static void love(int n,int []m){
    for (int i = 1; i < n; i++) {
        System.out.println(i);
        if (m[i]==n){
            System.out.println("I Love You!");
            break;
       		}
    	}
    }
情况时间复杂度
元素n在第一个位置T(n)=O(1)
元素n在最后一个位置T(n)=O(n)
假设元素n在任意一个位置的概率相同T(n)=O(n)

举例5

 public static void love(int n){
        int sum = 0;
        for ( int i = 0; sum < n; i++) {
            sum += i;
            System.out.println(i);
    	}
	}

i=0时,sum=0
i=1时,sum=0+1
i=2时,sum=0+1+2
sum=0+1+2+……+k=(1+k)*k/2<n,
时间复杂度为O(n1/2)

举例6

 public static void love(int n){
        int sum = 0;
        for ( int i = 0; i < n; i*=2) {
            for (int j = 0; j < i; j++) {
                sum++; 
            }
        }
    }

外层执行k次,2k-1<n<2k
内层执行T=1+2+4+8+……+2k-1=2k-1次,故n<T<2n,时间复杂度为O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值