Influxdb中,Flux常用的函数

目录

一、Flux常用的函数及其简要描述

1. 数据源和筛选函数

2. 聚合函数

3. 时间序列操作函数

4. 转换和映射函数

5. 窗口函数

6. 其他常用函数

注意事项

二、使用方法举例 

1. 数据源和筛选

2. 聚合

3. 时间序列操作

4. 窗口函数

5. 转换和映射

注意事项

三、时间窗口

定义

特点和类型

在不同工具中的应用

总结


在InfluxDB中,Flux查询语言提供了丰富的函数库,用于执行各种数据处理和分析任务。

一、Flux常用的函数及其简要描述

1. 数据源和筛选函数

  • from():指定数据源,即查询的存储桶(Bucket)。
  • range():指定查询的时间范围。必须紧跟在from()函数之后使用。
  • filter():根据条件过滤数据。可以基于测量值(_measurement)、字段(_field)、标签等条件进行过滤。

2. 聚合函数

  • mean():计算某个字段的平均值。
  • sum():计算某个字段的总和。
  • count():计算非空值的数量。
  • median():计算中位数。
  • mode():计算众数,即出现次数最多的值。
  • spread():计算字段的最小值和最大值之间的差值。
  • stddev():计算字段值的标准偏差。

3. 时间序列操作函数

  • last():返回具有最新时间戳的字段值。
  • first():返回具有最早时间戳的字段值。
  • integral():计算曲线下面的面积,通常用于计算累积值。

4. 转换和映射函数

  • map():遍历表流中的每一条数据,并对每条数据进行转换或映射。
  • toInt()、**toFloat()**等类型转换函数:将字段值转换为指定类型。

5. 窗口函数

  • window():对数据流进行窗口化操作,用于在时间序列数据上执行滑动窗口聚合等操作。
  • aggregateWindow():与window()类似,但它在窗口内对数据进行聚合操作。

6. 其他常用函数

  • yield():将表流作为查询结果返回。在Flux脚本中,如果最终没有使用yield()显式返回结果,InfluxDB会自动在管道的最后加上|> yield(name: "_result")
  • array.from():将单个值或值的集合转换为表流。这在需要将非表流数据(如单个整数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值