问题 H: 路哥从不低头
时间限制: 1 Sec 内存限制: 128 MB
题目描述
路哥是云南中医学院大一新生,对路哥来说任何人任何物都只是他的道具而已。
过程不重要,只要最后胜利是属于路哥的。
路哥每次出完手就把这锅扔给别人。
而他自己,深藏功与名,事了拂衣去。
毕竟,深藏不露是一种卓越的才能。
某天,路哥被班主任叫去清理海报。
这里有一块宽为W,高为H的海报栏。以左下角为原点建立直角坐标系。
第i张贴上去的海报左下角为(x1_i,y1_i),右上角为(x2_i,y2_i)。
撕去一张海报会导致所有覆盖在其上的海报被同时撕掉(这个过程具有传递性,即如果A覆盖B,B覆盖C,那么撕掉C会导致A和B均被撕掉)
一张海报如果可以被撕掉需要至少存在一个角没有被其他海报覆盖。
海报A被海报B覆盖当且仅当存在A和B的交面积大于0,并且A在B之前贴出。
由于路哥嫌麻烦,为了提高效率,路哥会一次性的撕掉尽可能多的海报。
现在请你帮路哥计算路哥一次最多可以撕掉多少张海报。
在张数相同的情况下,路哥会选择更早贴出的海报。
输入
多组数据。
第一行三个整数W,H,N,分别为海报栏的宽和高,贴出的海报数量。
接下来N行,每行四个整数x1_i,y1_i,x2_i,y2_i。
(1 <= W,H <= 10000000, 1 <= N <= 1000, 0 <= x1_i,x2_i <= W, 0 <= y1_i,y2_i <= H)
输出
输出两个整数,分别是海报数量和撕去的是第几张。
样例输入
复制样例数据
6 7 4
0 0 4 4
1 0 3 4
1 4 4 6
0 0 3 5
样例输出
3 1
因为每张海报只会对它后面的海报产生影响,所以可以把海报的位置离线下来从后往前搞。然后n又很小,直接暴力搜索就行,最坏的情况是n^2的复杂度。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 5;
typedef long long ll;
int w,h,n;
vector <int> vec[maxn];
int vis[maxn],f[5];
struct fun
{
int x1,x2,y1,y2;
}z[maxn];
int check(fun a, fun b, int i)
{
bool flag = 1;
if (a.x2 > b.x1 && a.x2 <= b.x2 && a.y2 > b.y1 && a.y2 <= b.y2)
f[1] = i;
if (a.x1 >= b.x1 && a.x1 < b.x2 && a.y2 > b.y1 && a.y2 <= b.y2)
f[2] = i;
if (a.x1 >= b.x1 && a.x1 < b.x2 && a.y1 >= b.y1 && a.y1 < b.y2)
f[3] = i;
if (a.x2 > b.x1 && a.x2 <= b.x2 && a.y1 >= b.y1 && a.y1 < b.y2)
f[4] = i;
if (a.x2 <= b.x1 || a.y1 >= b.y2 || a.x1 >= b.x2 || a.y2 <= b.y1)
flag = 0;
return flag;
}
int main()
{
while(~scanf("%d%d%d", &w, &h, &n))
{
memset(f, 0, sizeof f);
int ans = 0;
int ansi = 0;
for (int i = 1; i <= n; ++i)
scanf("%d%d%d%d", &z[i].x1, &z[i].y1, &z[i].x2, &z[i].y2);
for (int i = n; i >= 1; --i)
{
memset(vis, 0, sizeof vis);
int cnt = 1;
for (int j = n; j > i; --j)
if (check(z[i], z[j], i))
vec[i].emplace_back(j);
int ff = 0;
for (int j = 1; j <= 4; ++j)
if (f[j] == i)
++ff;
if (ff == 4)
continue;
queue <int> q;
q.emplace(i);
vis[i] = 1;
while (!q.empty())
{
int t = q.front();
q.pop();
for (int j = 0; j < vec[t].size(); ++j)
{
int tt = vec[t][j];
if (!vis[tt])
{
q.emplace(tt);
vis[tt] = 1;
++cnt;
}
}
}
if (cnt >= ans)
{
ans = cnt;
ansi = i;
}
}
for (int i = 1; i <= n; ++i)
vec[i].clear();
printf("%d %d\n", ans, ansi);
}
return 0;
}