大数据平台架构实战(五)使用IntelliJ开发Spark

本文详细介绍了如何在IntelliJ IDEA中配置并利用Spark 3.1.3进行WordCount示例,包括Hadoop和Spark的安装过程,以及关键代码实现和Maven构建的整合。适合初学者理解Spark开发环境搭建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录 

​大数据平台架构实战(一)hadoop搭建

大数据平台架构实战(二)IntelliJ IDEA搭建hadoop

大数据平台架构实战(三)Hive安装

大数据平台架构实战(四)Spark安装

相关的文章非常多,按照网上的步骤,总会出问题,现在更新一下最新版本的开发方法。

IntelliJ 配置

参考使用IntelliJ IDEA开发Spark应用程序_厦大数据库实验室博客

代码

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object WordCount {
  def main(args: Array[String]) {
    val inputFile =  "/input"
    val conf = new SparkConf().setAppName("WordCount").setMaster("local")
    val sc = new SparkContext(conf)
    val textFile = sc.textFile(inputFile)
    val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
    wordCount.foreach(println)
  }
}

pom文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>spark-base</artifactId>
    <version>1.0-SNAPSHOT</version>

    <name>WordCount</name>
    <packaging>jar</packaging>

    <properties>
        <cupid.sdk.version>3.3.8</cupid.sdk.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <scala.version>2.12.8</scala.version>
        <scala.binary.version>2.12</scala.binary.version>
        <PermGen>512m</PermGen>
        <MaxPermGen>1024m</MaxPermGen>
        <spark.version>3.1.3</spark.version>
        <emr.version>2.0.0</emr.version>
        <loghubb.client.version>0.6.13</loghubb.client.version>
    </properties>

    <repositories>
        <repository>
            <id>alimaven</id>
            <name>aliyun maven</name>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
    </repositories>

    <dependencies>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>com.cloudera.sparkts</groupId>
            <artifactId>sparkts</artifactId>
            <version>0.4.0</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>ml.dmlc</groupId>
            <artifactId>xgboost4j-spark</artifactId>
            <version>0.81</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.binary.version}</artifactId>
            <version>${spark.version}</version>
<!--            <scope>provided</scope>-->
        </dependency>


        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
<!--            <scope>provided</scope>-->
        </dependency>

        <dependency>
            <groupId>org.codehaus.jackson</groupId>
            <artifactId>jackson-core-asl</artifactId>
            <version>1.9.13</version>
        </dependency>



    </dependencies>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.1</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <minimizeJar>false</minimizeJar>
                            <shadedArtifactAttached>true</shadedArtifactAttached>
                            <artifactSet>
                                <includes>
                                    <!-- Include here the dependencies you
                                        want to be packed in your fat jar -->
                                    <include>*:*</include>
                                </includes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
                                    <resource>reference.conf</resource>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <!--
                    <execution>
                        <id>scala-test-compile-first</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                    -->
                    <execution>
                        <id>attach-scaladocs</id>
                        <phase>verify</phase>
                        <goals>
                            <goal>doc-jar</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

打包jar

提交运行

spark-submit --class WordCount /Users/xxxx/Project/spark-base/target/spark-base-1.0-SNAPSHOT-shaded.jar 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值