洛谷B2143 进制转换

这篇文章介绍了如何使用C++编程语言中的递归算法将十进制数转换成任意小于等于16的进制数,包括读取输入、逐位转换和倒序输出的过程。
摘要由CSDN通过智能技术生成

题目描述

用递归算法将一个十进制数 X 转换成任意进制数 M(M≤16)。

输入格式

一行两个数,第一个十进制数 X,第二个为进制M。

输出格式

输出结果。

输入输出样例

输入 #1

31 16 

输出 #1

1F
#include<bits/stdc++.h>
using namespace std;
//初始化数组(来存储转换过后的数)
int m[100005];//定义在外面是因为怕函数里会爆掉,个人习惯 

int main(){
	int n,k,i=1;//初始化 原数 进制 统计变量 
	cin>>n>>k;
	
	//while循环 转换每一位数字
	while(n!=0){
		m[i] = n%k;
		n = n/k;//注意变化原数的值 
		++i;//记录转换后的位数 
	}
	--i;//最后i会多1,需要减掉
	
	//for循环 倒序输出每一位 
	for(int j=1;j<=i;j++){
		//数组中会出现10,11这样大于9的数,需要用字母表示 
		if(m[i-j+1]==10) cout<<'A';//注意是倒序输出 首项-末项+1 
		else if(m[i-j+1]==11) cout<<'B';//大小写也要注意 
		else if(m[i-j+1]==12) cout<<'C';
		else if(m[i-j+1]==13) cout<<'D';
		else if(m[i-j+1]==14) cout<<'E';
		else if(m[i-j+1]==15) cout<<'F';
		else cout<<m[i-j+1];
	}
	
	return 0;
}

总结 

整体思路:

1.读取数据;

2.while 逐位转换;

3.for 倒序输出。

感谢阅读,有任何问题都可以评论或私信,支持一下up吧!

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值