#include <iostream>
#include <string>
std::string s;
int carry = 0;
int a[10] = {0};
int b[10] = {0};
int main(){
std::cin >> s;
for(int i = s.size() - 1; i >= 0; --i){
a[s[i] - '0']++;
s[i] = s[i] + s[i] - '0' + carry;
carry = 0;
if(s[i] > '9'){
s[i] -= 10;
carry = 1;
}
b[s[i] - '0']++;
}
if(carry){
s = "1" + s;
std::cout << "No" << std::endl << s;
return 0;
}
for(int i = 0; i < 10; ++i){
if(a[i] != b[i]){
std::cout << "No" << std::endl << s;
return 0;
}
}
std::cout << "Yes" << std::endl << s;
return 0;
}
题目如下:
Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798