舍去法
一次rand7运算只能生成7个整数数,没有办法均匀的映射到10个整数上。但是运行两次rand7可以生成49个数字,如果这49个数字是均匀分布的,舍去多余的9个,剩下的40个正好可以映射到10个整数上。
代码1
int
i;
do
{
i = 7 * (rand7() - 1 ) + rand7(); // it is now uniformly random between 1 and 49
} while (i > 40 ); // it is now uniformly random between 1 and 40
return i % 10 + 1 ; // result is now uniformly random between 1 and 10
do
{
i = 7 * (rand7() - 1 ) + rand7(); // it is now uniformly random between 1 and 49
} while (i > 40 ); // it is now uniformly random between 1 and 40
return i % 10 + 1 ; // result is now uniformly random between 1 and 10
这个算法做到了从40个数字均匀映射到1到10,这个说法有些抽象,进一步形象的来说明,考虑如下的种子矩阵:
int
seed7[
7
][
7
]
=
{
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 },
{ 8 , 9 , 10 , 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 , 9 , 10 , 1 },
{ 2 , 3 , 4 , 5 , 6 , 7 , 8 },
{ 9 , 10 , 1 , 2 , 3 , 4 , 5 },
{ 6 , 7 , 8 , 9 , 10 , 0 , 0 },
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 }
};
上面1-10数字一共出现了40次,每个数字出现4次,0出现了9次。我们在这个表里筛选,如果选中了0则重新选一次,如果非0则返回结果。那么,1-10恰好可以得到平均的机会:
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 },
{ 8 , 9 , 10 , 1 , 2 , 3 , 4 },
{ 5 , 6 , 7 , 8 , 9 , 10 , 1 },
{ 2 , 3 , 4 , 5 , 6 , 7 , 8 },
{ 9 , 10 , 1 , 2 , 3 , 4 , 5 },
{ 6 , 7 , 8 , 9 , 10 , 0 , 0 },
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 }
};