- 博客(613)
- 资源 (3)
- 收藏
- 关注
原创 视频生成/视频理解【文章汇总】SVD, Sora, Latte, VideoCrafter12, DiT...
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human percepti
2024-07-24 09:58:00
1663
原创 人体三维重建【文章汇总】Humans
PA-MPJPE则是在计算误差之前,首先对预测的姿态进行了最佳比例的刚体变换(包括旋转、平移和缩放),这一过程通常通过Procrustes分析实现,目的是为了消除全局旋转和平移的影响,以及可能的比例差异,从而更加专注于评估姿态结构本身的准确性。PCK指标计算的是被正确检测出的关键点数量占总关键点数量的百分比,这里的“正确检测”指的是预测的关键点位置与真实位置之间的距离小于或等于一个给定的误差阈值(通常以关节或者像素为单位)。:对每个关节的位置序列进行一阶微分,得到各个关节的速度随时间的变化情况。
2024-07-03 15:40:48
2501
原创 Attention相关问题笔试解析。
Transformer的核心思想是使用自注意力机制(Self-Attention Mechanism)来建模序列数据中的依赖关系,取代传统的递归神经网络(RNN)和卷积神经网络(CNN)在处理序列任务时的局限性。具体来说,Transformer的架构主要由编码器(Encoder)和解码器(Decoder)组成,每个编码器和解码器模块由多头自注意力机制(Multi-Head Self-Attention Mechanism)和前馈神经网络(Feed-Forward Neural Network)组成。
2024-05-26 11:08:15
1998
原创 3D、扩散模型、GAN、StyleGAN、MAE.等【face-swapping方法汇总】
face-swapping是将一张脸的身份(肤色、面部皮肤、眉毛、眼睛、鼻子、嘴唇和嘴巴等)与另一张脸的非外观属性(表情、头部姿势、光照、图像分辨率、注释方向、头发、眼镜、耳朵、耳环、颈部和背景等非内部人脸区域)相结合,生成合成人脸。
2023-05-25 14:58:43
4190
29
原创 扩散模型+CV与NLP科研笔记专栏文章汇总:【Diffusion Models】
CLIP是一个多模态的大模型,用了4亿个(图像、文本)对进行对比学习,学习之后可以直接进行zero-shot推理,并且不需要像ImageNet那样标注1000个类,而是可以人为给出文本提示,进行图片和文本之间的相似度计算,而且迁移效果很好。那么基于此,提出了Classifier-Free Diffusion Guidance,后续非常多的工作都是基于其来进行的,例如DALL·E 2、Imagen等吸引人眼球的模型基本上都是以它为基础做的。直接用训练好的非条件的扩散模型,无需重复训练。
2023-04-04 15:54:14
5348
34
原创 perCLTV: A General System for Personalized Customer Lifetime Value Prediction in Online Games论文精读
摘要: 网易团队2023年提出的perCLTV系统解决了在线游戏客户终身价值(CLTV)预测中的个性化不足问题。传统方法仅单一建模流失或付费行为,且忽视两者的关联性。perCLTV创新性地采用门控序列多任务学习框架,结合玩家行为序列和社交关系图数据,同步优化流失预测与付费预测任务,并引入判别式行为学习机制提升跨游戏泛化能力。实验表明,该系统在三个真实数据集上显著优于基线方法,并在网易多款游戏中部署验证:弹窗推荐转化率提升3.12倍,流失率降低2.0%。该研究为游戏行业提供了通用的个性化CLTV预测方案,相关
2025-10-31 15:24:35
742
原创 介绍一下AA实验和AB实验
核心概念一览1. A/B 实验**核心要素:****工作流程:****应用场景:**2. A/A 实验**核心目的:****为什么需要A/A实验?****如何解读A/A实验结果?**总结与关系我们来详细介绍一下A/A实验和A/B实验。它们是数据驱动决策,尤其是在互联网产品优化和用户体验设计中的核心工具。A/A实验是“体检医生”,它检查实验平台这个“工具”本身是否健康、准确。在启动重要的A/B实验之前,或定期对实验平台进行校验时,应该运行A/A实验。A/B实验是“正式比赛”
2025-10-16 19:26:31
788
原创 LightGBM评估指标中至关重要的参数【average】介绍
核心概念:为什么需要 `average`?各参数详解与应用场景总结与选择建议参数核心思想适用场景对类别不平衡的敏感性'binary'只看指定的一个类仅限二分类'micro'平等看待每个样本关心整体性能,尤其是大类的表现敏感(受大类影响)'macro'平等看待每个类别所有类别同等重要,关心小类的表现不敏感'weighted'按样本量加权看待每个类别处理类别不平衡时的首选,兼顾类别重要性。
2025-10-10 15:25:45
606
原创 SQL中NTILE函数的用法详解
NTILE函数是SQL中的一种窗口函数(Window Function),用于将有序数据集划分为指定数量的桶(bucket),并为每一行分配一个桶编号。:如果总行数不能被n整除,前面的桶会比后面的桶多1行。例如,有10行数据分成3个桶,桶大小将是4,3,3。这个查询将员工按薪水从高到低排序,然后分成4个桶(四分位数),每个员工会被分配一个1-4的编号。如果n大于行数,则前几行会依次编号1到n,后面的行会重复这个模式。NTILE的独特之处在于它关注的是将数据分成大致相等的部分,而不是单纯的行编号或排名。
2025-09-18 16:16:00
495
原创 SQL的UNION用法大全介绍
SQL UNION操作符用于合并多个SELECT语句的结果集。本文全面介绍了UNION的用法,包括基本语法、与UNION ALL的区别(去重/性能)、使用规则(列数相同、数据类型兼容等)以及常见应用场景(基本合并、保留重复记录、多表合并等)。还提供了高级用法如实现PIVOT效果、动态SQL结合和计算总计行,并给出性能优化建议(优先UNION ALL、索引优化等)和注意事项(结果顺序、行数限制等)。合理使用UNION可有效满足复杂数据分析需求。
2025-09-17 16:25:18
863
原创 python正则表达式专项训练
正则表达式是一个强大的工具,但复杂的模式可能会难以理解和维护。建议在编写复杂正则时添加注释或拆分为多个简单的正则表达式。正则表达式(Regular Expression)是处理字符串的强大工具,Python通过。模块提供正则表达式支持。默认是贪婪匹配(尽可能多的匹配),在量词后加。变为非贪婪匹配(尽可能少的匹配)搜索字符串中第一个匹配项。从字符串开头匹配模式。返回所有匹配项的列表。
2025-09-10 10:25:59
314
原创 SQL表一共有几种写入方式
是临时分析表,通常更适合用 INSERT OVERWRITE TABLE。(以及 Spark SQL)中,数据写入表的方式主要有。或 CREATE TABLE AS SELECT。
2025-09-05 16:22:55
493
原创 SQL JOIN 操作全面解析
JOIN类型描述匹配左表匹配右表不匹配左表不匹配右表INNER JOIN只返回匹配的行包含包含排除排除LEFT JOIN返回左表所有行+匹配的右表行包含包含包含排除RIGHT JOIN返回右表所有行+匹配的左表行包含包含排除包含FULL JOIN返回两表所有行包含包含包含包含CROSS JOIN返回两表的笛卡尔积全部组合全部组合不适用不适用。
2025-09-02 16:10:55
882
原创 详细介绍RIGHT JOIN及其用法
虽然RIGHT JOIN在某些特定场景下很有用,但在实际开发中,许多开发者倾向于使用LEFT JOIN并通过调整表顺序来实现相同功能,因为这样通常更符合从左到右的阅读习惯。RIGHT JOIN(右连接)是SQL中的一种连接操作,它与LEFT JOIN相对,会返回右表中的所有记录,即使在左表中没有匹配项。这将返回所有部门及其员工,即使某些部门没有分配员工(name将为NULL)。这个查询找出所有从未被订购过的产品(左表为NULL的记录)。
2025-09-02 16:09:44
489
原创 详细介绍INNER JOIN及其用法
INNER JOIN(内连接)是SQL中最基本且最常用的连接类型,它只返回两个表中满足连接条件的匹配行。这将只返回有明确部门分配的员工信息(既在employees表又在departments表中有对应记录)。INNER JOIN是构建复杂查询的基础,理解其工作原理对于编写高效SQL至关重要。这个查询获取学生、他们选修的课程以及授课教师的信息。只返回属于"Electronics"类别的产品。
2025-09-02 16:07:58
603
原创 详细介绍LEFT JOIN及其用法
LEFT JOIN是SQL中保留左表全部记录的连接方式,即使右表无匹配项也会返回左表数据,右表对应字段为NULL。与INNER JOIN不同,它不要求两表都有匹配记录。基本语法为SELECT 列 FROM 左表 LEFT JOIN 右表 ON 连接条件。典型应用包括显示所有主表记录、查找无关联数据的项(如WHERE右表ID IS NULL)等场景。使用时需注意性能优化,如为连接列建立索引,避免大数据量下的不必要连接。LEFT JOIN特别适合需要包含主表完整数据的查询需求。
2025-09-02 15:58:25
826
原创 LeetCode-3000. 对角线最长的矩形的面积【数组 第 379 场周赛】
题目要求找出二维数组中对角线最长的矩形面积,若对角线相同则返回最大面积。解题思路包括:1)遍历计算每个矩形的对角线长度,比较并记录最大对角线对应的面积;2)简洁写法,利用元组比较特性直接得出结果。两种方法时间复杂度均为O(n),空间复杂度O(1)。示例显示对于输入[[9,3],[8,6]],输出48;[[3,4],[4,3]]输出12。最终提供Python代码实现,并附解题说明。
2025-08-26 15:34:40
307
原创 LTV模型介绍
LTV(生命周期价值)模型是量化用户全生命周期贡献价值的重要工具,主要用于优化营销策略和风险管理。核心指标包括用户获取成本(CAC)和投资回报率(ROI),健康标准为LTV>3×CAC。计算方式涵盖基础公式(ARPU×1/流失率)和考虑时间价值的净现值法。应用场景包括广告投放优化、用户分层运营和金融风险控制。企业通过整合用户行为数据,结合机器学习预测LTV,指导资源分配和运营决策,实现价值最大化与风险平衡。
2025-08-26 09:37:33
1230
2
原创 SQL中的WITH语句(公共表表达式CTE)解释
SQL中的WITH语句(公共表表达式CTE)是一种创建临时结果集的强大功能,可提高复杂查询的可读性。基本语法允许定义临时表(CTE),在当前查询中引用。CTE支持递归查询(WITH RECURSIVE),适合处理层次结构数据。主要用途包括简化复杂查询、替代子查询以及执行递归操作。相比子查询,CTE使代码更清晰,且支持同一查询中多次引用。虽然CTE只在当前查询有效,但它能显著提升SQL语句的组织性和维护性,是处理重复计算和递归数据结构的理想工具。
2025-07-31 10:35:50
865
原创 python刷题关键记录【常用api使用方法总结,常用函数使用方法】
本文整理了Python编程中常用的几个实用技巧:1) 使用正则表达式将运算表达式字符串拆分为列表,详细解析了匹配数字、运算符和括号的模式;2) 堆操作的两种实现方式(直接导入和heapq模块);3) 二分查找的bisect模块用法;4) 组合排列数的计算方法;5) 十六进制字符串与十进制的转换;6) 字符与ASCII码的互相转换。这些代码片段涵盖了算法实现中常见的数据处理和数学运算需求。
2025-07-31 10:26:30
298
原创 【TMM 2024】An Efficient Attribute-Preserving Framework for Face Swapping
【Paper】【Code】暂无【Project】暂无来自香港大学博士的一篇工作,专注于人脸属性的保留。通过利用深度神经网络,最近的人脸交换技术在生成保持一致身份的人脸方面表现出色。然而,虽然这些方法能准确地转移源身份,但在保留目标人脸的重要属性(如头部姿势、表情和注视方向)方面却往往力不从心。因此,目前在这一领域的研究还没有取得令人满意的成果。在本文中,我们提出了一种高效的属性保留框架,简称 AP-Swap,用于人脸交换。我们的方法包含两个创新模块,专门用于保留关键的面部属性。
2025-01-01 15:05:31
1370
原创 【arXiv 2023】A Generalist FaceX via Learning Unified Facial Representation
【Paper】【Code】【Project】来自1浙江大学APRIL实验室 2腾讯优图实验室 3南洋理工大学 4VIVO 5密歇根州立大学 6南京大学的一个可以处理四个脸部任务的统一模型(即face Reenactment, Face Swapping, Head Swapping, face Animation),是值得细细学习的。
2024-12-30 11:35:07
1313
原创 我的4周年创作纪念日
对于创作而言,我的梦想是建立一个属于自己的品牌,通过文字、图像或者视频等形式传递积极向上的价值观。为了实现这一目标,我计划在未来几年内专注于提升自己的专业技能,深入研究所在领域的前沿技术,并积极参与行业交流,拓宽人脉资源。无论是在职业道路上追求卓越,还是在创作天地里自由翱翔,我都将以最真诚的态度面对每一天,珍惜每一次机会,勇敢迎接每一个挑战,让梦想照进现实,书写属于自己的精彩篇章。写的最好的代码有很多,都是题解的代码,最近看的代码也很多,不断学习吧。
2024-12-29 19:53:37
1120
原创 【NeurIPS 2024】FuseAnyPart: Diffusion-Driven Facial Parts Swapping via Multiple Reference Images
【Paper】【Code】待发【Project】暂无来自上海交通大学与阿里巴巴集团的工作,参考多个图像的不同脸部部分进行融合人脸编辑。面部部位交换旨在选择性地将感兴趣区域从源图像转移到目标图像,同时保持目标图像的其余部分不变。现有问题大多数专为全脸交换而设计的面部交换研究在交换单个面部部位时要么无法实现,要么受到很大限制,这阻碍了细粒度和定制的角色设计。然而,设计这种专门用于面部部位交换的方法面临着合理的多参考特征融合的挑战,这需要既高效又有效。
2024-12-28 19:23:00
238
原创 LeetCode-8. 字符串转换整数 (atoi)【字符串】
第 2 步:“1337c0d3”(当前没有读入字符,因为这里不存在 ‘-’ 或者 ‘+’)第 2 步:“0-1” (当前没有读入字符,因为这里不存在 ‘-’ 或者 ‘+’)第 2 步:“42”(当前没有读入字符,因为这里不存在 ‘-’ 或者 ‘+’)第 2 步:" -042"(读入 ‘-’ 字符,所以结果应该是负数)第 1 步:“1337c0d3”(当前没有读入字符,因为没有前导空格)第 1 步:“0-1” (当前没有读入字符,因为没有前导空格)第 1 步:" -042"(读入前导空格,但忽视掉)
2024-12-17 20:24:45
851
原创 【ECCV 2024】Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control
【Paper】【Code】【Project】来自浙江大学、腾讯优图实验室、VIVO、南洋理工大学的工作,Face-Adapter旨在解决目前SD适配器在执行面孔重演/交换时性能不尽人意的问题。当前的面部重演和交换方法主要依赖于 GAN 框架,但最近的重点已经转向预训练的扩散模型,因为它们具有卓越的生成能力。然而,训练这些模型是资源密集型的,并且结果尚未达到令人满意的性能水平。为了解决这个问题,我们引入了Face-Adapter,这是一种高效且有效的适配器,专为预训练扩散模型的高精度和高保真人脸编辑而设计。
2024-12-16 19:16:58
1075
原创 【arXiv 2024】HiFiVFS: High Fidelity Video Face Swapping
【Paper】【Code】暂无【Project】来自腾讯和VIVO的视频换脸工作,主要利用稳定视频扩散(SVD)的强大生成能力和时间先验,结合细粒度属性模块与详细的身份注入进行视频换脸,是一个很精彩的工作!面部交换旨在生成将源身份与目标属性相结合的结果。现有的方法主要集中在基于图像的人脸交换。处理视频时,每一帧都是独立处理的,很难确保时间稳定性。从模型角度来看,换脸正逐渐从生成对抗网络(GAN)转向扩散模型(DM),因为DM已被证明具有更强的生成能力。
2024-12-14 15:50:59
1056
原创 【WACV 2025】Realistic and Efficient Face Swapping: A Unified Approach with Diffusion Models
【Paper】【Code】本文基于扩散模型,利用的是扩散修复来进行换脸,并进行了改进,是一个值得借鉴的工作。Face Shape Augmentation (FA) 在文中用于防止模型简单地从目标图像中复制重建图像,从而提高人脸交换的鲁棒性。1. 生成 2D 网格点首先,生成一个与人脸面具大小相同的 2D 网格点集合。2. 设置控制点在网格上设置一组控制点 O。3. 添加随机噪声向控制点 O 添加随机噪声 δ,得到点 P。噪声强度由缩放因子 s 控制,以便进行精确调节。4. 生成插值函数。
2024-12-12 21:43:04
1398
原创 Spherical Harmonics (SH)球谐函数的原理及应用【3DGS】
高斯泼溅Gaussian Splatting (GS) GS 模型采用一组 3D 高斯函数来表示 3D 场景。每个高斯分布都由一组参数来表征,即指定其中心的位置(平均值)、定义高斯分布的形状和方向的协方差矩阵、控制透明度级别的不透明度及其颜色由球谐函数 (SH)表示。GS 通过优化所有 3D 高斯参数来表示辐射场。此外,GS算法的计算效率源于其渲染过程,它利用了高斯分量的投影特性。
2024-12-09 14:56:51
5053
原创 DDIM为什么能加速采样,原理是什么。
DDIM(Denoising Diffusion Implicit Models)能够加速采样的关键在于它打破了传统扩散模型(如DDPM,Denoising Diffusion Probabilistic Models)中依赖的马尔可夫性质,并通过重新定义反向过程的概率分布来实现这一点。以下是DDIM加速采样的原理:非马尔可夫性质:自定义反向过程分布:保持一致性:灵活的噪声控制:简化的目标函数:综上所述,DDIM通过引入非马尔可夫性质、重新定义反向过程分布并保持数据分布的一致性,实现了比DDPM更快的采样速
2024-12-07 14:59:03
1838
原创 VAE为什么叫变分(variational),相对于AE有什么区别。
然而,在VAE中,我们不是直接学习一个确定的编码,而是学习一个概率分布——具体来说,是潜在变量的一个近似后验分布。总结来说,虽然AE和VAE都是基于编码-解码架构的神经网络,但它们的设计理念不同,导致了它们在功能上的差异:AE侧重于数据压缩和重构;就是隐变量的后验分布,算法中就采用一个参数化的神经网络(或者说一个参数化的函数) 去近似拟合这个后验概率分布,因此这个算法被称为 变分 自编码器。反过来而已, 这一部分也是用一个参数化的神经网络近似推断出这个条件概率分布,因此解码器部分也是一个变分推断的过程。
2024-12-07 13:53:01
872
原创 大模型,多模态大模型面试问题【代码题,DDPM,损失函数,激活函数,3DGS,Nerf,SH】
DDPM(Denoising Diffusion Probabilistic Models)中的加噪公式通常以根号形式出现,是由于在扩散过程中的噪声控制。softmax loss损失函数详解损失函数是机器学习和深度学习中用于衡量模型预测结果与真实结果之间差异的函数。均方误差 (Mean Squared Error, MSE)MSE1n∑i1nyi−yi2MSEn1∑i1nyi−yi2用途:常用于回归问题,适合于数值型目标。
2024-12-06 15:53:09
1438
原创 大模型,多模态大模型,AI算法面试问题【bert,resnet,ROC,扩散模型,DiT,LoRA,3DGS,Nerf,FID】
ROC通常指的是“接收者操作特性”(Receiver Operating Characteristic)曲线,这是一种广泛应用于医学、统计学、机器学习等领域的图形工具,用于描述二分类模型的性能。ROC曲线通过绘制真阳性率(True Positive Rate, TPR)与假阳性率(False Positive Rate, FPR)之间的关系来评估模型的性能。真阳性率(TPR):也称为灵敏度或召回率,是指所有实际为正类的样本中被正确预测为正类的比例。
2024-12-06 15:50:53
1843
原创 大模型,多模态大模型面试问题【P-tuning,VAE,梯度累加,秩,混合精读训练,SVM,softmax,LoRA】
在使用语言模型(如基于Transformer的模型)时,模型在生成回答时会根据上下文生成一个一个的token。你提到的“我去哪里”是一个输入序列,模型的输出可能是“去北京”。输入序列的Embedding当你输入“我去哪里”时,模型会首先将这个句子转换为token embeddings。这些embeddings是通过查找词嵌入矩阵得到的,代表了每个token的语义信息。上下文表示模型在处理输入时,会通过自注意力机制结合输入序列中每个token的信息,生成每个token的上下文表示。
2024-10-31 12:30:55
1189
原创 手写二维卷积conv2d
在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应位置的元素。原创文章,转载告知,盗版必究。时间复杂度:O(n)空间复杂度:O(n)
2024-10-31 11:10:30
440
原创 大模型,多模态大模型面试问题记录【时序,Qformer,卷积,感受野,ControlNet,IP-adapter】
参考BLIP2中Q-former详解Q-Former是一个轻量级的transformer,它使用一个可学习的query向量集,从冻结的视觉模型提取视觉特征。采取两阶段预训练策略阶段一:vision-language表示学习(representation learning),迫使Q-Former学习和文本最相关的视觉表示。
2024-10-28 15:47:33
1891
原创 视频编码器架构【视频理解,视频生成】
具体细节查看/mnt/data/group/zzk/projects/models/InternVideo2-Chat-8B/modeling_internvideo2_vit.py的856行。下面代码是第三阶段的,图中Projection只用于第一阶段训练。详见InternVideo2_Paper。InternVideo2-Chat-8B-stage3的视频编码器。
2024-10-28 09:57:17
323
原创 大模型,多模态大模型面试问题【计算图,LLama,交叉熵,SiLU,RLHF】
计算图模式:PyTorch 是动态图,TensorFlow 是静态图(2.0以后支持动态图)。灵活性和调试性:PyTorch 更加灵活、易调试,TensorFlow 在性能和大规模部署上更有优势。用户群体:PyTorch 更适合科研和实验,TensorFlow 更适合生产和部署。总之,PyTorch 更注重代码的动态性和可操作性,而 TensorFlow 强调性能优化和部署灵活性。绝对位置编码的优点是计算速度快等,缺点是拓展长度比较麻烦,且绝对位置并没有什么实际意义。
2024-10-26 23:02:28
1636
原创 大模型,多模态大模型面试【LoRA,分类,动静态数据类型,DDPM,ControlNet,IP-Adapter, Stable Diffusion】
扩散去噪概率模型(Denoising Diffusion Probabilistic Models,DDPM)详细介绍目录概述背景模型原理正向扩散过程反向去噪过程训练过程采样过程模型优势应用场景近期发展数学细节总结参考文献1. 概述扩散去噪概率模型(DDPM)是一类生成模型,利用马尔可夫链逐步添加和去除噪声来生成数据。它在图像生成、音频生成等领域表现出色,生成质量与生成对抗网络(GAN)相当甚至更好,同时训练更加稳定。2. 背景。
2024-10-25 10:16:15
1638
原创 【论文精读WACV_2023】FastSwap: A Lightweight One-Stage Framework for Real-Time Face Swapping
【Paper】【Code】【Project】最近的face交换框架已经取得了高保真效果。然而,以往的工作由于结构较深和使用现成的网络,计算成本较高。为了克服这些问题并实现实时face swapping,我们提出了一个轻量级的单阶段框架FastSwap。我们设计了一个浅层网络,以自我监督的方式训练,没有任何手工标注。该框架的核心是一种新的解码块,称为三重自适应归一化Triple Adaptive Normalization(TAN)块,它有效地集成了身份和位姿信息。
2024-10-24 12:54:17
99
T5的整体介绍代码实战
2023-06-02
OSError: Looks like you do not have git-lfs installed【没有root权限】
2023-05-30
从DDPM到score-based generative models再到Consistency Models的介绍
2023-05-28
【Bert、T5、GPT】fine tune transformers 文本分类/情感分析
2023-05-30
基于 Logistic 混沌映射和 Arnold 变换 的变换域水印改进算法【高级网络与信息安全技术-信息隐藏期末课程论文】
2023-05-23
实验课的通用LaTeX模板,经过多年的使用和改进的最终版本,有英文和中文两种,逻辑清晰,上手简单
2023-05-20
Score-Based Generative Modeling的一个代码示例,已经训练好,并且有代码注释,帮助更深入的理解学习
2023-03-31
diffusion-model的一个小demo,能够生成S型曲线,对于初学者深入理解扩散模型很有帮助
2023-03-06
运动场管理系统.rar
2022-04-11
考研数学笔记包括:线性代数和高等数学的笔记(xmind)
2022-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅