简单使用numpy数组

numpy数组

1. array()

numpy.array可以将一个List转成numpy数组,如:

import numpy as np
np.array([1,2,3,4])
np.array([[1,2,3],[1,2,3],[1,2,3]])

运行结果为:

array([1, 2, 3, 4])
array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]])

2. arange()

numpy.arange的使用方法类似与range,只是生成的是numpy数组,如:

import numpy as np
np.arange(5)

运行结果为:

array([0, 1, 2, 3, 4])

3. logspace()

logspace函数和linspace类似,不过它创建等比数列,下面的例子产生1(100)到100(102)、有20个元素的等比数列:
如:

import numpy as np
np.logspace(0, 2, 20)1, 2, 3, 4])

运行结果为:

array([   1.        ,    1.27427499,    1.62377674,    2.06913808,
          2.6366509 ,    3.35981829,    4.2813324 ,    5.45559478,
          6.95192796,    8.8586679 ,   11.28837892,   14.38449888,
         18.32980711,   23.35721469,   29.76351442,   37.92690191,
         48.32930239,   61.58482111,   78.47599704,  100.        ])

4. linspace()

linspace函数通过指定开始值、终值和元素个数来创建一维数组,可以通过endpoint关键字指定是否包括终值,缺省设置是包括终值 ,如:

import numpy as np
np.linspace(2.0, 3.0, num=5, endpoint=False)

运行结果为:

array([ 2. ,  2.2,  2.4,  2.6,  2.8])

5. ones()

numpy.ones用于生成一个全是1的numpy数组,如:

import numpy as np
np.ones(5)
np.ones((5, 3))

运行结果为:

array([ 1.,  1.,  1.,  1.,  1.])
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],

6. zeros()

numpy.zeros的使用方式与numpy.ones类似,不同的是数组中的内容全部为0,如:

import numpy as np
np.zeros(2)
np.zeros((2, 2))

运行结果为:

array([  0,   0])
array([[  0,   0],
       [  0,   0]])

7. empty()

numpy.empty的使用方式与numpy.ones类似,不同的是数组中的内容是无意义的数值,如:

import numpy as np
np.empty(2)
np.empty((2, 2))

运行结果为:

array([  4.24399158e-314,   8.48798317e-314])
array([[  4.94065646e-324,   9.88131292e-324],
       [  1.48219694e-323,   1.97626258e-323]])

8. meshgrid()

快速生成二维数据的行列号。用途:X、Y二维数组可当作matplotlib会图库的x,y两个参数使用。

import numpy as np
x = np.arange(10)
y = np.arange(15)
X, Y = np.meshgrid(x, y)

运行结果为:

X
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
Y
array([[ 0,  0,  0,  0,  0,  0,  0,  0,  0,  0],
       [ 1,  1,  1,  1,  1,  1,  1,  1,  1,  1],
       [ 2,  2,  2,  2,  2,  2,  2,  2,  2,  2],
       [ 3,  3,  3,  3,  3,  3,  3,  3,  3,  3],
       [ 4,  4,  4,  4,  4,  4,  4,  4,  4,  4],
       [ 5,  5,  5,  5,  5,  5,  5,  5,  5,  5],
       [ 6,  6,  6,  6,  6,  6,  6,  6,  6,  6],
       [ 7,  7,  7,  7,  7,  7,  7,  7,  7,  7],
       [ 8,  8,  8,  8,  8,  8,  8,  8,  8,  8],
       [ 9,  9,  9,  9,  9,  9,  9,  9,  9,  9],
       [10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
       [11, 11, 11, 11, 11, 11, 11, 11, 11, 11],
       [12, 12, 12, 12, 12, 12, 12, 12, 12, 12],
       [13, 13, 13, 13, 13, 13, 13, 13, 13, 13],
       [14, 14, 14, 14, 14, 14, 14, 14, 14, 14]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值