Luogu P3455 [POI2007]ZAP-Queries

题目大意

给定 n , m , k n,m,k n,m,k,求
∑ i = 1 n ∑ j = 1 m [ ( i , j ) = k ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m[(i,j)=k] i=1nj=1m[(i,j)=k]

题解

考虑化简,得:
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ [ ( i , j ) = 1 ] \sum\limits_{i=1}^{\lfloor \frac nk\rfloor}\sum\limits_{j=1}^{\lfloor \frac mk\rfloor}[(i,j)=1] i=1knj=1km[(i,j)=1]
利用中心结论,得:
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ ( i , j ) μ ( d ) \sum\limits_{i=1}^{\lfloor \frac nk\rfloor}\sum\limits_{j=1}^{\lfloor \frac mk\rfloor}\sum\limits_{d|(i,j)}\mu(d) i=1knj=1kmd(i,j)μ(d)

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d = 1 ( i , j ) μ ( d ) [ d ∣ ( i , j ) ] \sum\limits_{i=1}^{\lfloor \frac nk\rfloor}\sum\limits_{j=1}^{\lfloor \frac mk\rfloor}\sum\limits_{d=1}^{(i,j)}\mu(d)[d|(i,j)] i=1knj=1kmd=1(i,j)μ(d)[d(i,j)]

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d = 1 ( i , j ) μ ( d ) [ d ∣ i ] [ d ∣ j ] \sum\limits_{i=1}^{\lfloor \frac nk\rfloor}\sum\limits_{j=1}^{\lfloor \frac mk\rfloor}\sum\limits_{d=1}^{(i,j)}\mu(d)[d|i][d|j] i=1knj=1kmd=1(i,j)μ(d)[di][dj]

∵ g c d ( a , b ) ⩽ m i n ( a , b ) \because gcd(a,b) \leqslant min(a,b) gcd(a,b)min(a,b)
设答案为

∑ d = 1 m i n ( ⌊ n k ⌋ , ⌊ m k ⌋ ) p d ∗ μ ( d ) 。 \sum\limits_{d=1}^{min(\lfloor \frac nk\rfloor,\lfloor \frac mk\rfloor)} p_d*\mu(d)。 d=1min(kn,km)pdμ(d)

我们发现, p d p_d pd 等于 d ∣ i d|i di d ∣ j d|j dj 的数的个数。
因此可以转换成如下形式:
∑ d = 1 m i n ( ⌊ n k ⌋ , ⌊ m k ⌋ ) μ ( d ) ∑ i = 1 ⌊ n k ⌋ [ d ∣ i ] ∑ j = 1 ⌊ m k ⌋ [ d ∣ j ] \sum\limits_{d=1}^{min(\lfloor \frac nk\rfloor,\lfloor \frac mk\rfloor)}\mu(d)\sum\limits_{i=1}^{\lfloor \frac nk\rfloor}[d|i]\sum\limits_{j=1}^{\lfloor \frac mk\rfloor}[d|j] d=1min(kn,km)μ(d)i=1kn[di]j=1km[dj]
后面两个和式可以直接得出:
∑ d = 1 m i n ( ⌊ n k ⌋ , ⌊ m k ⌋ ) μ ( d ) ⌊ n k d ⌋ ⌊ m k d ⌋ \sum\limits_{d=1}^{min(\lfloor \frac nk\rfloor,\lfloor \frac mk\rfloor)}\mu(d)\lfloor\dfrac n{kd}\rfloor\lfloor\dfrac m{kd}\rfloor d=1min(kn,km)μ(d)kdnkdm
线筛出 μ \mu μ,求前缀和,最后数论分块即可。时间复杂度 Θ ( n + T n ) \Theta(n+T\sqrt{n}) Θ(n+Tn )

#include<bits/stdc++.h>
using namespace std;
#define maxn 100000
int mu[maxn],p[maxn];
bool vis[maxn];
void euler_mu(int n) {
    int tot=0;
    memset(mu,0,sizeof mu);
    memset(vis,0,sizeof vis);
    mu[1]=1;
    for(int i=2;i<=n;++i) {
        if(!vis[i]) p[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*p[j]<=n;++j) {
            vis[i*p[j]]=1;
            if(i%p[j]==0) {
                mu[i*p[j]]=0;
                break;
            }
            mu[i*p[j]]=-mu[i];
        }
    } for(int i=1;i<=n;i++)//前缀和
        mu[i]+=mu[i-1];
}
int main(){
    int T;
    euler_mu(50000);//线性筛只做一次
    scanf("%d",&T);
    while(T--){
        int _n,_m,k,ans=0;
        scanf("%d%d%d",&_n,&_m,&k);
        _n/=k;_m/=k;
        int a=_n,b=_m,n=min(_n,_m);
        int len=min(n,min(a,b));
        for(int l=1,r;l<=len;l=r+1){
            r=min(a/(a/l),b/(b/l));
            if(r>n) r=n;
            ans+=(mu[r]-mu[l-1])*(a/l)*(b/l);
        }
        printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值