kaggle比赛:房价预测(基于MXNet框架)

kaggle比赛:房价预测

1. 获取和读取数据集

%matplotlib inline
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import data as gdata, loss as gloss, nn
import numpy as np
import pandas as pd
train_data = pd.read_csv('kaggle_house_pred_train.csv')
test_data = pd.read_csv('kaggle_house_pred_test.csv')
# 查看数据集大小
train_data.shape
(1460, 81)
test_data.shape
(1459, 80)
# 查看数据集的前4个特征、后2个特征和标签(SalePrice)
train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]
IdMSSubClassMSZoningLotFrontageSaleTypeSaleConditionSalePrice
0160RL65.0WDNormal208500
1220RL80.0WDNormal181500
2360RL68.0WDNormal223500
3470RL60.0WDAbnorml140000

第一个特征是Id,它能帮助模型记住每个训练样本,但难以推广到测试样本,所以不使用它来训练。我们将所有的训练数据和测试数据的79个特征按样本连结。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

2. 预处理数据

对连续数值的特征做标准化:设该特征在整个数据集上的均值为 μ \mu μ,标准差为 σ \sigma σ。那么,我们可以将该特征的每个值先减去 μ \mu μ再除以 σ \sigma σ得到标准化后的每个特征值。对于缺失的特征值,我们替换成该特征的均值。

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# 标准化后,每个特征的均值变为0,所以可以直接用0来填充
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 离散数值转成指示特征(dummy_na=True将缺失值也当作合法的特征值并为其创建指示特征)
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
(2919, 331)
# 转换为NumPy
n_train = train_data.shape[0]
train_features = nd.array(all_features[:n_train].values)
test_features = nd.array(all_features[n_train:].values)
train_labels = nd.array(train_data.SalePrice.values).reshape((-1, 1))

3. 训练模型

采用线性回归模型和平方损失函数来训练模型

loss = gloss.L2Loss()
def get_net():
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize()
    return net

给定预测值 y 1 ^ , . . . , y n ^ \hat{y_1},...,\hat{y_n} y1^,...,yn^和对应的真实标签 y 1 , . . . , y n y_1,...,y_n y1,...,yn,它的定义为:
1 n ∑ i = 1 n ( log ⁡ ( y i ) − log ⁡ ( y i ^ ) ) 2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(y_i)-\log(\hat{y_i}))^2} n1i=1n(log(yi)log(yi^))2
对数均方误差的实现如下:

def log_rmse(net, features, labels):
    # 将小于1的值设成1,使取得对数时数值更稳定
    clipped_preds = nd.clip(net(features), 1, float('inf'))
    rmse = nd.sqrt(2 * loss(clipped_preds.log(), labels.log()).mean())
    return rmse.asscalar()
# adam优化算法
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = gdata.DataLoader(gdata.ArrayDataset(train_features, train_labels), batch_size, shuffle=True)
    # adam
    trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay})
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer.step(batch_size)
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

4. K折交叉验证

def get_k_fold_data(k, i, X, y):
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = nd.concat(X_train, X_part, dim=0)
            y_train = nd.concat(y_train, y_part, dim=0)
    return X_train, y_train, X_valid, y_valid
from utils import semilogy
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse', range(1, num_epochs + 1), valid_ls, ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f'% (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k

5. 模型选择

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f'% (k, train_l, valid_l))


fold 0, train rmse 0.169587, valid rmse 0.156890
fold 1, train rmse 0.162094, valid rmse 0.190214
fold 2, train rmse 0.163576, valid rmse 0.167963
fold 3, train rmse 0.167884, valid rmse 0.154819
fold 4, train rmse 0.162563, valid rmse 0.182855
5-fold validation: avg train rmse 0.165141, avg valid rmse 0.170548

6. 预测结果

def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size)
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f'% train_ls[-1])
    preds = net(test_features).asnumpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)


train rmse 0.162728
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值