快速排序(Quick Sort)

快速排序(Quick Sort)

一、基本思想

通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

二、实现逻辑

快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分成两个子序列(sub-lists)。

算法步骤:

  1. 选定Pivot中心轴;
  2. 将大于Pivot的数字放在Pivot的右边;
  3. 将小于Pivot的数字放在Pivot的左边;
  4. 分别对左右子序列重复前三步操作,直到各子序列中的元素个数为1。

三、时间复杂度的分析

递归算法的时间复杂度公式: T [ n ] = a T [ n / b ] + f ( n ) T[n]=aT[n/b] + f(n) T[n]=aT[n/b]+f(n)

快速排序的最优情况是每一次取到的元素都刚好平分整个数组。此时时间复杂度的公式则为: T [ n ] = 2 T [ n / 2 ] + f ( n ) T[n]=2T[n/2]+f(n) T[n]=2T[n/2]+f(n) T [ n / 2 ] T[n/2] T[n/2]为平分后的子数组的时间复杂度, f ( n ) f(n) f(n)为平分这个数组所花的时间。

下面来推算一下,在最优的情况下快速排序时间复杂度的计算:

第一次递归: T [ n ] = 2 T [ n / 2 ] + n T[n] = 2T[n/2] + n T[n]=2T[n/2]+n

令: n = n / 2 n = n/2 n=n/2,则有: T [ n ] = 2 { 2   T [ n / 4 ] + ( n / 2 ) } + n = 2 2 T [ n / ( 2 2 ) ] + 2 n T[n]=2\{2 \ T[n/4] + (n/2)\} + n = 2^2 T[n / (2^2)] + 2n T[n]=2{2 T[n/4]+(n/2)}+n=22T[n/(22)]+2n

令: n = n / ( 2 2 ) n = n / (2^2) n=n/(22),则有: T [ n ] = 2 3 T [ n / ( 2 3 ) ] + 3 n T[n] = 2^3 T[n/(2^3)]+3n T[n]=23T[n/(23)]+3n

若m次递归结束,则令: n = n / ( 2 m − 1 ) n=n/(2^{m-1}) n=n/(2m1),有: T [ n ] = 2 m T [ 1 ] + m n T[n]=2^{m} T[1] + mn T[n]=2mT[1]+mn

于是得到: T [ n / ( 2 m ) ] = T [ 1 ] T[n/(2^m)]=T[1] T[n/(2m)]=T[1],则有: n = 2 m n=2^m n=2m,即: m = log ⁡ 2 ( n ) m=\log_2(n) m=log2(n)

故有: T [ n ] = 2 log ⁡ 2 ( n ) T [ 1 ] + n log ⁡ 2 ( n ) T[n] = 2^{\log_2(n)} T[1] + n \log_2(n) T[n]=2log2(n)T[1]+nlog2(n),其中 n n n为元素个数,当 n ≥ 2 n \geq 2 n2时, n log ⁡ 2 ( n ) ≥ n n \log_2(n) \geq n nlog2(n)n,所以取后面的 n log ⁡ 2 ( n ) n\log_2(n) nlog2(n)

综上所述:快速排序最优情况下时间复杂度为: Ω ( n log ⁡ 2 ( n ) ) \Omega(n \log_2(n)) Ω(nlog2(n))

平均的情况下,设枢轴的关键字应该在第 k k k的位置( 1 ≤ k ≤ n 1 \leq k \leq n 1kn),那么:

T [ n ] = 1 n ∑ k = 1 n ( T [ k − 1 ] + T [ n − k ] ) + n = 2 n ∑ k = 1 n T [ k ] + n T[n]=\frac{1}{n} \sum_{k=1}^{n}(T[k-1] + T[n-k]) + n = \frac{2}{n} \sum_{k=1}^{n} T[k] +n T[n]=n1k=1n(T[k1]+T[nk])+n=n2k=1nT[k]+n

由数学归纳法可知,其数量级为 Θ ( n log ⁡ 2 ( n ) ) \Theta(n \log_2(n)) Θ(nlog2(n))

当我们选取的枢纽每次都是最大元素时,就是最差情况,待排序的序列为正序或者逆序,每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空。如果递归树画出来,它就是一棵斜树。此时需要执行 n ‐ 1 n‐1 n‐1次递归调用,且第 i i i 次划分需要经过 n ‐ i n‐i ni 次关键字的比较才能找到第 i i i 个记录,是枢轴的位置,因此比较次数为:

∑ i = 1 n − 1 = ( n − 1 ) + ( n − 2 ) + . . . + 1 = n ( n − 1 ) 2 \sum_{i=1}^{n-1} = (n-1) + (n-2) + ... + 1 = \frac{n(n-1)}{2} i=1n1=(n1)+(n2)+...+1=2n(n1)

于是时间复杂度为: O ( n 2 ) O(n^2) O(n2)

四、空间复杂度的分析

递归造成的栈空间的使用,最好情况,递归树的深度为 log ⁡ 2 n \log_2n log2n,其空间复杂度也就为 Ω ( log ⁡ ( n ) ) \Omega(\log(n)) Ω(log(n));最坏情况,需要进行 n ‐ 1 n‐1 n‐1递归调用,其空间复杂度为 O ( n ) O(n) O(n);平均情况,空间复杂度也为 Θ ( log ⁡ ( n ) ) \Theta(\log(n)) Θ(log(n))

由于关键字的比较和交换是跳跃进行的,因此,快速排序是一种不稳定的排序方法。

五、算法实现

一行实现

quick_sort = lambda array: array if len(array) <= 1 else quick_sort([item for item in array[1:] if (item > array[0] if reverse else item <= array[0])]) + [array[0]] + quick_sort([item for item in array[1:] if (item <= array[0] if reverse else item > array[0])])

递归实现

def quick_sort(array: list, l: int, r: int, reverse: bool=False) -> None:
	'''
	array: 支持数值型数据,如整型与浮点型混合;支持全为字符串类型的数据;不支持字符串型与数值型混合。
	l: 数据左侧游标(整型), r: 数据右侧游标(整型)
	reverse: 是否降序, 默认采用升序。
	'''
	if l >= r:
		return None
	if l < r:
		mid = partition(array, l, r, reverse=reverse)
		quick_sort(array, l, mid - 1)
		quick_sort(array, mid + 1, r)

def partition(array: list, l: int, r: int, reverse: bool=False) -> int:
	'''
	array: 数据(列表), l: 数据左侧游标(整型), r: 数据右侧游标(整型)
	'''
	value = array[r]
	index = l - 1
	for ind in range(l, r):
		if (array[ind] > value if reverse else array[ind] <= value):
			index += 1
			array[index], array[ind] = array[ind], array[index]
	array[index + 1], array[r] = array[r], array[index + 1]
	return index + 1

非递归实现

def quick_sort(array: list, l: int, r: int, reverse: bool=False) -> None:
	'''
	array: 支持数值型数据,如整型与浮点型混合;支持全为字符串类型的数据;不支持字符串型与数值型混合。
	l: 数据左侧游标(整型), r: 数据右侧游标(整型)
	reverse: 是否降序, 默认采用升序。
	'''
	if l >= r:
		return None
	stack = []
	stack.append(l)
	stack.append(r)
	while stack:
		low = stack.pop(0)
		high = stack.pop(0)
		if high - low <= 0:
			continue
		value = array[high]
		index = low - 1
		for ind in range(low, high):
			if (array[ind] > value if reverse else array[ind] <= value):
				index += 1
				array[index], array[ind] = array[ind], array[index]
		array[index + 1], array[high] = array[high], array[index + 1]
		stack.extend([low, index, index+2, high])
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
快速排序Quick Sort)是一种常用的排序算法,它的基本思想是通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的所有数据小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以达到整个数据变成有序序列。 下面是快速排序的实现代码: ```cpp #include <iostream> using namespace std; // 交换两个元素的值 void swap(int& a, int& b) { int temp = a; a = b; b = temp; } // 分割函数,将数组分割为两部分,并返回分割点的下标 int partition(int arr[], int low, int high) { int pivot = arr[low]; // 以第一个元素作为基准值 int i = low, j = high; while (i < j) { // 从右向左找到第一个小于基准值的元素 while (i < j && arr[j] >= pivot) { j--; } if (i < j) { swap(arr[i], arr[j]); } // 从左向右找到第一个大于基准值的元素 while (i < j && arr[i] <= pivot) { i++; } if (i < j) { swap(arr[i], arr[j]); } } return i; // 返回分割点的下标 } // 快速排序函数 void quickSort(int arr[], int low, int high) { if (low < high) { int pivotPos = partition(arr, low, high); // 获取分割点的下标 quickSort(arr, low, pivotPos - 1); // 对分割点左边的子数组进行快速排序 quickSort(arr, pivotPos + 1, high); // 对分割点右边的子数组进行快速排序 } } int main() { int arr[] = {5, 2, 9, 1, 7, 6, 3, 8, 4}; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); cout << "排序后的数组:"; for (int i = 0; i < n; i++) { cout << arr[i] << " "; } return 0; } ``` 以上代码实现了快速排序算法。首先定义了一个`swap`函数用于交换两个元素的值,然后定义了一个`partition`函数用于将数组分割为两部分,并返回分割点的下标。最后定义了`quickSort`函数用于递归地对子数组进行快速排序。 在`main`函数中,我们定义了一个待排序的数组`arr`,然后调用`quickSort`函数对其进行排序,并输出排序后的结果。 快速排序的时间复杂度为O(nlogn),是一种高效的排序算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值